Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1/4 + 1/5 + .... + 1/19 > 1/4 + ( 1/20 + 1/20 +....+ 1/20) = 1/4 + 3/4 = 1
=> B > 1
( có 15 p/s 1/20)
Vì 1/4>1/15;1/5>1/15;1/6>1/15;...;1/14>1/15;1/15=1/15.
1/16>1/20;1/17>1/20;1/18>1/20;1/19>1/20.
=>B>1/15+1/15+1/15+...+1/15+1/20+1/20+1/20+1/20.
Số số hạng 1/15 là:
(15-4):1+1=12(số).
=>B>12*1/15+4/1/20.
=>B>4/5+1/5.
=>B>1.
tk mk nha các bn.
-chúc ai tk mk học giỏi-
Ta có:
\(\frac{1}{4}>\frac{1}{16};\frac{1}{5}>\frac{1}{16};\frac{1}{6}>\frac{1}{16};...;\frac{1}{19}< \frac{1}{16}\)
(lấy phân số \(\frac{1}{16}\)vì từ \(\frac{1}{4}\)đến\(\frac{1}{19}\)có 16 số nên lấy\(\frac{1}{16}\)để đc 1)
\(\Rightarrow\)\(\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)>\left(\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{...1}{16}\right)=1\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}>1\) \(\left(1\right)\)
\(\Rightarrow\)\(\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\right)< \left(\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}\right)=1\)
\(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}< 1\) \(\left(2\right)\)
Từ\(\left(1\right)\)và\(\left(2\right)\)suy ra B>1 là 11 lần (vì có 11 số)và B<1 là 4 lần (vì có 4 số)
\(\Rightarrow\)B>1
3)
3/5 + 3/7-3/11 / 4/5 + 4/7- 4/11
= 3.( 1/5 + 1/7 - 1/11)/4.(1/5+1/7-1/11)
= 3/4
1,
ta có B = 196+197/197+198 = 196/(197+198) + 197/(197+198)
196/197 > 196/197+198
197/198 > 197/197+198
=> A>B
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)
Xét \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
và \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.10=\frac{10}{19}>\frac{1}{2}\)
Do đó \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=\frac{5}{4}>1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}=\frac{1}{4}+\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{19}\right)\) > \(\frac{1}{4}+\left(\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)> \(\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>1\)
1, 3A = 1+1/3 +1/ 3^2 +......+1/3^99 2A = 3A-A =(1+1/3+1/3^2+.....+1/3^99) - (1/3+1/3^2+1/3^3 +.....+1/3^100) = 1 - 1/3^100 A= (1 - 1/3^100) / 2
Ta có :
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+..............+\frac{1}{19}\)
\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+.........+\frac{1}{19}\right)\)
Ta thấy :
\(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)
\(\frac{1}{10}+\frac{1}{11}+....+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.5>\frac{10}{19}>\frac{1}{2}\)
\(\Rightarrow B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}>1\)