Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2B= 2.(\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2016}}\))
=>2B= \(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+...+\(\frac{1}{2^{2017}}\)
=>2B-B= \(\frac{1}{2^{2017}}\)- \(\frac{1}{2}\)
Mà \(\frac{1}{2}\) >\(\frac{1}{2^{2017}}\)
=>B<0<1 (đpcm)
\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2017}}.\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{2017}}\Rightarrow B=1-\frac{1}{2^{2016}}< 1\)
2/
S = 2 + 22 + 23 +...+ 299
= (2+22+23) +...+ (297+298+299)
= 2(1+2+22)+...+297(1+2+22)
= 2.7 +...+ 297.7
= 7(2+...+297) chia hết cho 7
S = 2+22+23+...+299
= (2+22+23+24+25)+...+(295+296+297+298+299)
= 2(1+2+22+23+24)+...+295(1+2+22+23+24)
= 2.31+...+295.31
= 31(2+...+295) chia hết cho 31
3/
A = 1+5+52+....+5100 (1)
5A = 5+52+53+...+5101 (2)
Lấy (2) - (1) ta được
4A = 5101 - 1
A = \(\frac{5^{101}-1}{4}\)
4/
Đặt A là tên của biểu thức trên
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy...
5/
a, Gọi UCLN(n+1,2n+3) = d
Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+2 - (2n+3) chia hết cho d
=> -1 chia hết cho d => d = {-1;1}
Vậy...
b, Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+6 - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}
Vậy...
a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
Lời giải:
$B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}$
$2B=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}$
Trừ theo vế:
$2B-B=1-\frac{1}{2^{2016}}$
$B=1-\frac{1}{2^{2016}}< 1$ (đpcm)
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1
a, M=1/1.2+1/2.3+...+1/49.50
M=1−1/2+1/2−1/3+...+1/49−1/50
M=1−1/50<1
Vậy M<1
\(a,\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}< 1\)
\(=>M< 1\)
Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
B < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
B < \(1-\frac{1}{8}\) < 1
Vậy B < 1
Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=1-\frac{1}{8}=\frac{7}{8}\)
Mà \(A=\frac{7}{8}< 1\left(1\right)\)
\(\frac{1}{1.2}>\frac{1}{2^2}\)
\(\frac{1}{2.3}>\frac{1}{3^2}\)
\(...\)
\(\Rightarrow A>B\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)
\(\Rightarrow B< 1\left(đpcm\right)\)
ta có: \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2016}}\)
\(\Rightarrow B=\frac{2^{2016}-1}{2^{2016}}< 1\)
\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}< 1\left(đpcm\right)\)
để B > 1 thì 2B = 1+1/22+....+1/22015
B=1/2+1/22+....+1/22017
B=1-1/22018
Vậy B < 1