Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)
\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)
b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)
\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)
Dấu = xảy ra khi x=-1/2
a: \(=\dfrac{4x^3+8x^2-11x+3-\left(x^2-5\right)\left(2x-1\right)-2x^3-5x^2+x+1}{\left(2x-1\right)^3}\)
\(=\dfrac{2x^3+3x^2-10x+4-2x^3+x^2+10x-5}{\left(2x-1\right)^3}\)
\(=\dfrac{4x^2-1}{\left(2x-1\right)^3}=\dfrac{2x+1}{\left(2x-1\right)^2}\)
b: \(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1+x^{32}}\)
a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)
=>-12x-4=2x-10
=>-14x=-6
hay x=3/7
b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
hay x=3/5(loại)
c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)
\(\Leftrightarrow x^2+3x-1=x^2-x+1\)
=>4x=2
hay x=1/2(nhận)
1: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{16}{x+2}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)
\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x+1\right)}{x^2+x+1}\)
2: Để B=0 thì -x-1=0
hay x=-1(nhận)