K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Vì \(1\inℤ\)\(\Rightarrow\)Để B có giá trị nguyên dương thì \(\sqrt{x}-3\)thuộc ước nguyên dương của 4

\(\Rightarrow\sqrt{x}-3\in\left\{1;4\right\}\)\(\Leftrightarrow\sqrt{x}\in\left\{4;7\right\}\)\(\Leftrightarrow x\in\left\{16;49\right\}\)

Vậy \(x\in\left\{16;49\right\}\)

10 tháng 5 2022

chịu

 

30 tháng 10 2017

B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

B = \(1+\frac{4}{\sqrt{x}-3}\)

để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)

=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên  \(\sqrt{x}-3\in\left(1;4\right)\)

\(\sqrt{x}\)\(\in\)(4;7)

\(\in\)(16;49)

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
13 tháng 12 2023

\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)

Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)