Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Dự đoán khi a=b=1, ta chỉ cần xét thằng F = 9($\frac{1}{a^2}$ + $\frac{1}{b^2}$) - 6($\frac{a}{b}$ + $\frac{b}{a}$) lớn hơn hoặc bằng cái gì đó là xong . Thì ta có :
F = 9.$\frac{a^2 + b^2}{a^2b^2}$ - 6. $\frac{a^2+b^2}{ab}
= $\frac{a^2+b^2}{ab}$.($\frac{9}{ab}$ - 6)
Lại có $a^2 + b^2$ > 2ab (BĐT côsi )
=> $\frac{a^2+b^2}{ab}$ > 2
Và $\frac{9}{ab}$ - 6 > $\frac{9}{\frac{(a+b)^2}{4}}$ - 6 = 3
=> F > 6
Mà 2($a^2 + b^2$) > $(a+b)^2$ = 4
=> Q > 4+ F > 10
Dấu " = " <=> a=b=1. ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+1=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\)
tương tự \(\Rightarrow\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\left(a+b\right)\left(c+a\right)\left(b+c\right)=a^2b+b^2a+c^2a+a^2c+b^2c+c^2b+2abc\)
\(\Rightarrow\)VT=\(a^2b+b^2a+b^2c+c^2b+c^2a+a^2c+3abc\) =\(ab\left(a+b\right)+bc\left(a+b\right)+ca\left(a+b\right)+c\left(ab+bc+ca\right)\)=a+b+c
ta có (a+b+c)^2>=3(ab+bc+ca)=3 nên a+b+c>=căn3(đccm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì a,b,c là các số nguyên và a2 + b2 + c2 chia hết cho 4
Nên \(\hept{\begin{cases}a^2⋮4\\b^2⋮4\\c^2⋮4\end{cases}}\Leftrightarrow\hept{\begin{cases}a⋮4\\b⋮4\\c⋮4\end{cases}}\)
Vì a,b,c đều đồng thơi chia hết cho 4
mặt khác , 4 chia hết cho 2
=> a , b , c đồng thời chia hết cho 2