Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có:
aaabbb= aaa000+bbb
= a . 111000 + b .111
Vì 111000 \(⋮\) 111 => a.111000 \(⋮\) 111 (1)
111 \(⋮\) 111 => b.111 \(⋮\) 111 (2)ư
Từ (1) và (2) => a.111000 + b.111 \(⋮\) 111
=> aaabbb \(⋮\) 111 (đpcm)
1. ta có aaabbb=100000a+10000a+1000a+100b+10b+b=111000a+111b.
111000a:111 vì có 111 còn những số 0 kia có chia cũng bằng 0
111b:111 vì 111 đã chia hết cho 111
=>aaabbb chia hết cho 111
a) n+2 chia het n-1 b) 2n+7 chia het n+1
(n-1)+3 chia hết n-1 2(n+1)+5 chia hết n+1
Suy ra Suy ra
3 chia hết n-1 5 chia het n+1
n-1 thuộc Ư(3) n+1 thuộc Ư(5)
n-1 = 3 ; 1 n+1= 5 ; 1
n= 4 ; 2 n = 4 ; 0
Dễ thấy tổng S có 21 số hạng ,ta ghép từng cặp với nhau,mỗi cặp có 3 số hạng:
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{18}+2^{19}+2^{20}\right)\)
\(=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+.....+2^{18}.\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right).\left(1+2^3+....+2^{18}\right)=7.\left(1+2^3+....+2^{18}\right)\) luôn chia hết cho 7 (đpcm)
B = aaabbb
B = 111000a + 111b
B = 111 ( 1000a + b )
B = 3.37.(1000a+b) chia hết cho 37
Ta có:aaabbb=a00b.111=a00b.3.37 chia hết cho 37
Vậy số có dạng B tức aaabbb chia hết cho 37
Ủng hộ mik nha các bạn ^__^