\(\frac{a-b}{a+b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

Thay a=-3b vào M 

\(DK.a\ne0;b\ne0\)

\(M_b=\frac{2a+b}{a-b}-\frac{2a-b}{a+2b}=\frac{-6b+b}{-3b-b}-\frac{-6b-b}{-3b+2b}=\frac{5}{4}-\frac{-7}{-1}=-\frac{23}{4}\)

8 tháng 5 2016

\(2a^2+2b^2=5ab\)

<=>\(2a^2-5ab+2b^2=0\)

<=>\(2\left(a^2-\frac{5}{2}ab+b^2\right)=0\) <=> \(a^2-\frac{5}{2}ab+b^2=0\)

<=>\(a^2-2.a.\frac{5}{4}.b+b^2=0\)

<=>\(\left(a-\frac{5}{4}b\right)^2=0\) <=> \(a-\frac{5}{4}b=0\) <=> \(a=\frac{5}{4}b\)

Ta có: \(M=\frac{a+b}{a-b}=\frac{\frac{5}{4}b+b}{\frac{5}{4}b-b}=\frac{\left(\frac{5}{4}+1\right).b}{\left(\frac{5}{4}-1\right).b}=\frac{\frac{9}{4}b}{\frac{1}{4}b}=\frac{\frac{9}{4}}{\frac{1}{4}}=9\)

Vậy M=9

8 tháng 5 2016

(*) bài này có áp dụng HĐT:\(\left(a-b\right)^2=a^2-2ab+b^2\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

14 tháng 5 2016

e Hoàng Phúc tui co bai tuong tu ne

14 tháng 5 2016

M = 2(a-2ab+b) / 2(a+2ab+b) =ab/9ab = 1/9

lưu ý: a;b binh phuong nhé tui làm bieng viêt

16 tháng 1 2022

M=\(\frac{2a+b}{a-b}-\frac{2a-b}{a+2b}\)

M=\(\frac{2a+6b-5b}{a+3b-4b}-\frac{2a+6b-7b}{a+3b-1b}\)

M=\(\frac{2\left(a+3b\right)-5b}{\left(a+3b\right)-4b}-\frac{2\left(a+3b\right)-7b}{\left(a+3b\right)-1b}\)

M=\(\frac{-5b}{-4b}-\frac{-7b}{-1b}\)

M=\(\frac{5}{4}-\frac{7}{1}\)

M=\(-5\frac{3}{4}\)

25 tháng 11 2017

mấy cái trên la a^2.b chứ không pải a tất cả mũ 2b

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

28 tháng 11 2016

Ta có: \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=\frac{a+b+b+c+c+a}{3+4+5}=\frac{2.\left(a+b+c\right)}{12}\)

                                                                                                            \(=\frac{a+b+c}{6}\)

\(\Rightarrow\) Thay M vào tính

4 tháng 12 2016

Thay M vao tinh sao vay

14 tháng 2 2020

Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)

Vậy \(P=9\)

Trừ cả 3 đi 1 ta còn

\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

Vói a+b+c=1 thì P=-1

Với a+b+c khác 0 thì

\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)

\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)

Vậy............