K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

\(B=4+3^2+3^3+...+3^{2004}\)

\(\Rightarrow B=1+3+3^2+3^3+...+3^{2004}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2005}\)

\(\Rightarrow3B-B=3+3^2+3^3+...+3^{2005}-1-3-3^2-...-3^{2004}\)

\(\Rightarrow2B=3^{2005}-1\)

\(\Rightarrow B=\frac{3^{2005}-1}{2}< \frac{3^{2005}}{2}< 3^{2005}=C\)

Vậy B < C

7 tháng 10 2017
a) < b) > d) < e) > f) >
AH
Akai Haruma
Giáo viên
25 tháng 10 2024

a/

$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$

$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$

$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$

$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$

$>0+0=0$

$\Rightarrow A>3$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

b/

$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$

$=1-\frac{1}{2015}<1$

2 tháng 3 2018

Ta có : 

\(B=4+3^2+3^3+...+3^{2003}+3^{2004}\)

\(B=1+3+3^2+3^3+...+3^{2003}+3^{2004}\)

\(3B=3+3^2+3^3+...+3^{2004}+3^{2005}\)

\(3B-B=\left(3+3^2+3^3+...+3^{2004}+3^{2005}\right)-\left(1+3+3^2+...+3^{2003}+3^{2004}\right)\)

\(2B=3^{2005}-1\)

Vì : \(2B=3^{2005}-1< 3^{2005}=A\)

Nên \(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~

16 tháng 2 2018

Ta có:

\(B=4+3^2+3^3+...+3^{2004}\)

     \(=1+3+3^2+3^3+...+3^{2004}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2005}\)

\(\Rightarrow3B-B=\left(3+3^2+...+3^{2005}\right)-\left(1+3^2+...+3^{2004}\right)\)

\(\Rightarrow2B=3^{2005}-1\)

\(\Rightarrow B=\frac{3^{2005}-1}{2}\)

23 tháng 9 2018

khó vl

23 tháng 9 2018

ra ít một lần thôi bạn

22 tháng 9 2015

\(2^{2004}=2^{2001}.2^3=2^{2001}.8\)

\(3^{2003}=3^{2001}.3^2=3^{2001}.9\)

\(2^{2001}.8>3^{2001}.9\)

\(=>2^{2004}<3^{2003}\)

nho li-ke nha