Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu d
\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)
a: \(P=\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right)\cdot\dfrac{9x^2-6x+1}{6x^3+10x}\)
\(=\dfrac{-9x^2-3x+6x^2-2x}{\left(3x+1\right)\left(3x-1\right)}\cdot\dfrac{\left(3x-1\right)^2}{2x\left(3x^2+5\right)}\)
\(=\dfrac{-x\left(3x^2+5\right)}{\left(3x+1\right)}\cdot\dfrac{3x-1}{2x\left(3x^2+5\right)}=\dfrac{-3x+1}{2\left(3x+1\right)}\)
b: |3x+1|=2
=>3x+1=2 hoặc 3x+1=-2
=>x=-1
Thay x=-1 vào P, ta được:
\(P=\dfrac{-3\cdot\left(-1\right)+1}{2\left(3\cdot-1+1\right)}=\dfrac{5}{2\left(-2+1\right)}=\dfrac{5}{-2}=\dfrac{-5}{2}\)
c: Để P là số nguyên thì -3x+1 chiahết cho 6x+2
=>-6x+2 chia hết cho 6x+2
=>\(6x+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{-1\right\}\)
a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)
đkxđ: x khác 3, x khác -3
(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)
=>3x+9 -6x + x2+3x
<=>x2 + 3x-6x+3x + 9
<=>x2 +9
<=>(x-3).(x+3)
a, (4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-8x-9x+6-12x2+30x-2x+5+1
=11x+12
b, (3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c, (2x+1)(4x22x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
a) Điều kiện : \(x\ne\pm\dfrac{1}{3}\)
\(B=\left[\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right]:\dfrac{6x^2+10x}{1-6x+9x^2}\)
\(=\left(\dfrac{3x\left(3x+1\right)}{\left(1-3x\right)\left(3x+1\right)}+\dfrac{2x\left(1-3x\right)}{\left(1-3x\right)\left(3x+1\right)}\right):\dfrac{6x^2+10x}{ \left(3x-1\right)^2}\)
\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{6x^2+10x}\)
\(=\dfrac{x\left(3x+5\right)}{\left(1-3x\right)\left(3x+1\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}=\dfrac{1-3x}{2\left(3x+1\right)}\)
b) Sai đề = Không làm
c) B >0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x>0\\2\left(3x+1\right)>0\end{matrix}\right.\\\left[{}\begin{matrix}1-3x< 0\\2\left(3x+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x>-\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)
TH1 => \(-\dfrac{1}{3}< x< \dfrac{1}{3}\)
TH2 :Vô lí
Vậy giá trị x thỏa mãn :
\(-\dfrac{1}{3}< x< \dfrac{1}{3}\)