\(3+3^2+3^3+...+3^{90}\) Chứng minh rằng

a, B \(⋮4\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(B=3+3^2+3^3+...+3^{90}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+...+3^{89}\right)\)

\(=4\left(3+3^3+...+3^{89}\right)⋮4\)

12 tháng 10 2018

\(B=3+3^2+3^3+...+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...\left(3^{88}+3^{89}+3^{90}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{98}\right)\)

\(=13\left(3+3^4+...+3^{98}\right)⋮13\)

14 tháng 11 2018

a, \(A=2+2^2+2^3+...+2^{90}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{89}+2^{90})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{89}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{89}.3\)

=> \(A=(2+2^3+...+2^{89}).3\)chia hết cho 3

b, \(A=2+2^2+2^3+...+2^{90}\)

=> \(A=(2+2^2+2^3)+\left(2^4+2^5+2^6\right)+...+(2^{88}+2^{89}+2^{90})\)

=> \(A=2(1+2+2^2)+2^4.\left(1+2+2^2\right)+...+2^{88}(1+2+2^2)\)

=> \(A=2.7+2^4.7+...+2^{88}.7\)

=> \(A=(2+2^4+...+2^{88}).7\)chia hết cho 7

14 tháng 11 2018

a, A=2+2^2+2^3+2^4+...+2^90

A=(2+2^2)+(2^3+2^4)+..+(2^89+2^90)

A=2.(1+2)+2^3(1+2)+....+2^89(1+2)

A=2.3+2^3.3+...+2^89.3

A=3.(2+2^3+...+2^89)\(⋮\)3

=> A\(⋮\)3=>ĐPCM

b, A=2+2^2+2^3+....+2^90

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^88+2^89+2^100)

A=2.(1+2+2^2)+2^4.(1+2+2^2)+...+2^88.(1+2+2^2)

A=2.7+2^4.7+...+2^88.7

A=7.(2+2^4+...+2^88)\(⋮\)7

=>A\(⋮\)7=>ĐPCM

14 tháng 11 2018

\(B=2+2^2+2^3+...+2^{92}\)

=> \(B=(2+2^2+2^3+2^4)+...+\left(2^{89}+2^{90}+2^{91}+2^{92}\right)\)

=> \(B=2(1+2+2^2+2^3)+...+2^{89}\left(1+2+2^2+2^3\right)\)

=> \(B=2.15+...+2^{89}.15\)

=> \(B=(2+...+2^{89}).15\)CHIA HẾT CHO 15

14 tháng 11 2018

B = 2 + 22 + 23 + .... + 292

B = ( 2 + 22 + 23 + 24 ) +.....+ ( 289 + 290 + 291 + 292)

B = 2(1+2+22+23) +....+289(1+2+22+23)

B = 2.15+...+289.15

B = (2 + ..... + 2 89)

15 chia hết cho 15

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

16 tháng 10 2017

\(C=1+3+3^2+3^3+......+3^{11}\)

\(C=\left(1+3+3^2\right)+.......+\left(3^9+3^{10}+3^{11}\right)\)

\(C=13.\left(1+3+3^2\right)+........+13.\left(1+3+3^2\right)\)

Mà 13 \(⋮\)13 => C \(⋮\)13

Tương tự với câu b

16 tháng 10 2017

b) \(C=1+3+3^2+3^3+.......+3^{11}\)

\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(C=40.\left(1+3+3^2+3^3\right)+......+40.\left(1+3+3^2+3^3\right)\)

Mà 40 \(⋮\)40 => C \(⋮\)40

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40

12 tháng 12 2016

b, A = 3+3^2 +3^3 +3^4 +....+3^120

       =(3+3^2+3^3)+......+(3^118+3^119+3^120)

       =3(1+3+3^2)+....+3^118(1+3+3^2)

        = 3.13+...+3^118. 13

        = 13( 3+...+3^118) chia hết cho 13

c, A = 3+3^2 +3^3 + 3^4 +....+3^120

       = (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)

       = 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)

       = 3.40+ ...+3^117 .40

      = 40 .( 3+....+3^117) chia hết cho 40

11 tháng 10 2017

a/ Ta co: \(B=3+3^3+3^5+...+3^{1987}+3^{1989}+3^{1991}\)

\(\Rightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(\Rightarrow B=3\cdot\left(1+3^2+3^4\right)+...+3^{1987}\cdot\left(1+3^2+3^4\right)\)

\(\Rightarrow B=3\cdot91+...+3^{1987}\cdot91\)

\(\Rightarrow B=91\cdot\left(3+...+3^{1987}\right)\)

\(\Rightarrow13\cdot7\cdot\left(3+...+3^{1987}\right)⋮13\left(dpcm\right)\)

15 tháng 3 2018

thà chết đi còn hơn làm cái đống này mất gianroi

3 tháng 10 2018

\(A=\frac{2^{12}x3^4x3^{10}}{2^{12}x3^{12}}=3^2=9\)

3 tháng 10 2018

\(A=\frac{4^6.3^4.9^5}{6^{12}}\)

\(A=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}\)

\(A=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}\)

\(A=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}\)

\(A=3^2\left(2^{12}.3^{12}\ne0\right)\)

\(A=9\)

Vậy \(A=9\)