Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
a: \(B=3+3^2+3^3+...+3^{120}\)
\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)
b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)
\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
a) 4 ⋮ x ⇒ x ∈ Ư(4)
Ư(4) = {1;2;4}
⇒ x = {1;2;4}
b) -13 ⋮ (x+2) ⇒ x + 2 ∈ Ư(-13)
Ư(-13) = {1,-1,-13,13}
⇒ x = {-1,-3,-16;11}
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Không c/m được a^4 - b^4 chia hết cho 5 đâu bạn ạ vì đơn giản không phải nó luôn đúng nhưng nếu c/m ab(a^4 - b^4) chia hết cho 5 với a, b là số nguyên thì c/m được đó bạn ạ!
~~~~~~~
Bạn biến đổi: ab(a^4 - b^4) = ab[(a^4 - 1) - (b^4 - 1)]
= ab(a - 1)(a + 1)(a² + 1) - ab(b - 1)(b + 1)(b² + 1).
Sau đó bạn xét các trường hợp của a, b như chia hết cho 5, chia 5 dư 1, -1, 2, -2 để c/m a(a - 1)(a + 1)(a² + 1) chia hết cho 5, ab(b - 1)(b + 1)(b² + 1) chia hết cho 5 => ab(a - 1)(a + 1)(a² + 1) - ab(b - 1)(b + 1)(b² + 1) chia hết cho 5 hay ab(a^4 - b^4) chia hết cho 5 (đpcm).
~~~~~~~~
\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)
Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)
nên \(B\vdots2\)
B=(3+32)+(33+34)+...+(3299+3300)
B=3(1+3)+33(1+3)+...+3299(1+3)
B=3.4+33.4+...+3299.4
B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2
vậy B chia hết cho 2
a/
\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)
\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)
b/
\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)
\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)
Bạn xem đáp án ở đây nha
Câu hỏi của hghfty-Toán lớp 6-Học toán với Onlinemath
chúc bạn học giỏi nha