K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
29 tháng 12 2020

giả sử

tồn tại số tự nhiên a sao cho 

\(1+5^m+8^m=a^2\)

với m=0 vế trái bằng 3 (vô lí)

với m khác 0 , rõ ràng vế trái là một số chẵn , do đó a phải là số chẵn .

do đó vế phải chia hết cho 4

suy ra \(1+5^m+8^m⋮4\Leftrightarrow1+5^m⋮4\)

điều này vô lý vì \(5^m\) chia 4 dư 1 với mọi m, do đó \(1+5^m\)không thể chia hết cho 4

do đó số ban đầu không thể là số chính phương

1 tháng 3 2017

a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)

A có tổng các chữ số là 12 chia hết cho 3 (2)

Từ (1) và (2) với (3,8)=1 => A chia hết cho 24

b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương. 

31 tháng 12 2021

Onepiece23

26 tháng 9 2021

127^2; 999^2; 33^4;17^10;52^51

a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9

Ta có :

02 = 0 

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8

b) Vì 1262 có chữ số tận cùng là 6

=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )

Ta có 10012 có chữ số tận cùng là 1

=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )

Ta có 112 và 113 đều có chữ số tận cùng là 1 

=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )

Ta có 1010 có chữ số tận cùng là 0

=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )

Ta có 5151 có chữ số tận cùng là 1

=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )

1 tháng 1 2016

b = 2006 . 2007 .2008 đó 

1 tháng 1 2016

b là chi cu hay con gì đó

16 tháng 10 2019

                                                      Bài giải

Ta có :

\(B=5^0+5^1+5^2+...+5^{49}\)

\(5B=5^1+5^2+5^3+...+5^{50}\)

\(5B-B=5^{50}-5^0\)

\(4B=5^{50}-1\)

\(4B=\left(5^{25}\right)^2-1\text{ ( không phải là số chính phương ) }\)

\(\Rightarrow\text{ }B=\frac{\left(5^{25}\right)^2-1}{4}\text{ không phải là số chính phương}\)

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề