Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Bài giải
Ta có :
\(B=5^0+5^1+5^2+...+5^{49}\)
\(5B=5^1+5^2+5^3+...+5^{50}\)
\(5B-B=5^{50}-5^0\)
\(4B=5^{50}-1\)
\(4B=\left(5^{25}\right)^2-1\text{ ( không phải là số chính phương ) }\)
\(\Rightarrow\text{ }B=\frac{\left(5^{25}\right)^2-1}{4}\text{ không phải là số chính phương}\)
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
giả sử
tồn tại số tự nhiên a sao cho
\(1+5^m+8^m=a^2\)
với m=0 vế trái bằng 3 (vô lí)
với m khác 0 , rõ ràng vế trái là một số chẵn , do đó a phải là số chẵn .
do đó vế phải chia hết cho 4
suy ra \(1+5^m+8^m⋮4\Leftrightarrow1+5^m⋮4\)
điều này vô lý vì \(5^m\) chia 4 dư 1 với mọi m, do đó \(1+5^m\)không thể chia hết cho 4
do đó số ban đầu không thể là số chính phương