Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)
A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)
A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)
A= 21 + 4^3.21 + ...+ 4^57.21
A = 21.(1+4^3+...+4^57) chia hết cho 21
phần b đề là j z bn
![](https://rs.olm.vn/images/avt/0.png?1311)
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(4+4^2)+(4^3+4^4)+...+(4^19+4^20)
A=4(1+4)+4^3(1+4)+...+4^19(1+4)
A=(1+4).(4+4^3+...+4^19)
A=5.(4+4^3+..+4^19)
vì 5 chia hết cho =>5.(4+4^3+...+4^19) chí hết cho 5
=> A chia hết cho 5
câu b làm tương tự cũng nhóm mỗi nhóm là 2 số hạng giống a nha bn
Cho B= 1+3+3^2+3^3+......+3^98+3^99 chứng minh rằng B là bội của 4
B = (3+3^3+...+3^99)+(1+3^2+...+3^98) \(\equiv\left[\left(-1\right)+\left(-1\right)+...+\left(-1\right)\right]+\left(1+1+...+1\right)\left(mod7\right)\)
\(\equiv-50+50\left(mod4\right) \)\(\equiv0\left(mod4\right)\)-->B chia hết cho 4 . vậy B là bội số của 4. (đpcm)
Bạn giúp mình câu hai nữa được không?