Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
Ta có : 2x + 2x + 1 = 24
=> 2x(1 + 2) = 24
=> 2x.3 = 24
=> 2x = 8
=> 2x = 23
=> x = 3
Ta có : (x + 2)4 = (x + 2)6
=> (x + 2)4 - (x + 2)6 = 0
<=> (x + 2)4 (1 - (x + 2)2) = 0
<=> \(\orbr{\begin{cases}\left(x+2\right)^4=0\\\left(1-\left(x+2\right)^2\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\\left(x+2\right)^2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x+2=0\\x+2=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
1) Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)
hay \(A⋮3\)(đpcm)
2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{1996}.13\)
\(=39+3^3.39+...+3^{1995}.39\)
Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)
hay \(B⋮39\)(đpcm)
a) 2+22+23+...+2100
=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)
=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)
=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)
=2.31+26.31+....+296.31
=31(2+26+....+296)
=> đpcm
A=(1+3+32+33)+...+3^24 +3^25+3^26+3^27)+...+(3^24 + 3^25 + 3^26 + 3^27) +(3^28+3^29+3^30) (bạn chia nhóm 4 số, chỉ nhóm cuối có 3 số)
=40 + 3^4.40 + 3^7.40 +... +3^24.40+3^28+3^29+3^30
=40.(1 + 3^4 + 3^7 +...+ 3^24) +3^28+3^29+3^30
40 chia hết cho 10 nên 40.(1 + 3^4 + 3^7 +...+ 3^24) tận cùng là 0
3^28 =(3^4)^7 =81^7 = (...1)
3^29 = 3^28.3 =(...1).3 = (...3)
3^30 =3^29.3 = (...3).3 = (...9)
Vậy A = (...1)+(...3)+(...9)=(...3)
mà các số chính phương chỉ có tận cùng là 0,1,4,5,6,9
suy ra A ko là số chính phương
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)