Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(B=\frac{1}{2\left(n-1\right)^2+3}\) đạt GTLN <=> \(2\left(n-1\right)^2+3\) đạt GTNN
Vì \(\left(n-1\right)^2\ge0\forall n\)
\(\Rightarrow2\left(n-1\right)^2\ge0\forall n\)
\(\Rightarrow2\left(n-1\right)^2+3\ge3\forall n\) có GTNN là 3
Dấu "=" xảy ra <=> \(2\left(n-1\right)^2=0\Rightarrow n=1\)
\(\Rightarrow B_{max}=\frac{1}{3}\) tại x = 1
De B lon nhat
=> 2(n-1)2+3 nho nhat
Vi 2(n-1)2\(\ge\)0 => (n-1)2\(\ge0\)=> \(n\ge1\)
=> 2(n-1)2+3\(\ge3\)
=> Min B =3 khi n=1
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2n+1n−2= n−2+3n−2n−2+3n−2= n−2n−2n−2n−2+3n−23n−2=1+3n−23n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
a.
Ta có:
(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+349)/5=0
<=>(x+2)/327+(x+3)/326+(x+4)/325+(x+5)/324+(x+329)-4 (giải thích: (x+349)/5=(x+329+20)/5=(x+329)/5+4)
<=>1+(x+2)/327+1+(x+3)/326+1+(x+4)/325+1+(x+5)324+(x+329)/5=0
<=>(x+329)/327+(x+329)/326+(x+329)/325+(x+329)/324+(x+329)/5=0
<=>x+329(1/327+1/326+1/325+1/324+1/5)=0
Vì (1/327+...+1/5) khác 0 => x+329=0
=>x=-329
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
a) A = \(\dfrac{6n+7}{2n+3}\) = \(\dfrac{6n+9}{2n+3}\) − \(\dfrac{2}{2n+3}\) nguyên
⇔ 2n + 3 ∈ Ư(2) = {-2; -1; 1; 2}
⇔ 2n ∈ {-5; -4; -2; -1}
Vì n nguyên nên n ∈ {-2; -1}
Ta có:
B=1/(2.(n-1)^2 +3)
Mà: (n-1)^2 > hoặc =0 <=>2(n-1)^2 > hoặc = 0 (dấu = xảy ra khi n=1)
Vậy ta dễ dàng suy ra 2(n-1)^2 +3 lớn hơn hặc =3
Để B đạt g trị lớn nhất thì mẫu phải đạt g trị nhỏ nhất, vậy Min 2(n-1)^2 +3 =3
Vậy ta có với n=1 thì B đạt giá trị nhỏ nhất và giá trị đó =1/3