Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.
bài 2:
a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)
Kl: x<0
b) \(a+x< a\Leftrightarrow x< 0\)
Kl: x<0
c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)
Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Kl: x>1
Câu 4:
a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)
Kl: x>3
b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
Kl: x>2 hoặc x<1
c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)
Kl: -4<x<-1
d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)
Kl: -3<x<9
e) Đk: x khác 0
\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)
KL: x >5
f) ĐK: x khác 1
\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)
Kl: 1< x< 5/2
Bài 1:
a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)
= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)
b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)
= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)
\(\text{Câu 1 : }\) Tính
\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)
\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)
a, Để A = 0 thì x = 0 hoặc \(\left(x-\frac{1}{2}\right)\)= 0 => x = 0 hoặc x = 0,5
b, Để A > 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)> 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)< 0
=> x > 0 và x > 0,5 hoặc x < 0 và x < 0,5
c,a, Để A < 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)< 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)> 0 mà x > \(\left(x-\frac{1}{2}\right)\) => x > 0 và x < 0,5
a) \(x=\pm2,1\)
b) \(x=-\dfrac{3}{4}\)
c) \(\)Không tồn tại x
d)\(x=0,35\)
a, \(\left|x\right|=2,1\)
=> \(x=\pm2,1\)
b, \(\left|x\right|=\dfrac{3}{4},x< 0\)
=> \(x=\dfrac{3}{4}\)
c, \(\left|x\right|=-1\dfrac{2}{5}\)
=> Không tồn tại x.
d, \(\left|x\right|=0,35,x>0\)
=> \(x=0,35\)
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)
a: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)< 0\)
=>-1<x<4
b: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
\(\Leftrightarrow\dfrac{x-3}{x-9}< 0\)
=>3<x<9
a)=>x+1<0=>x<-1
x-2 =<0=> x=<2
b)x-2>0=>x>2
x+2/3>=0=>x>=-2/3
a)(x-1).(x-2)>0
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)>0\\\left(x-2\right)>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x>2\end{cases}}\)
Vậy x>2
b)(x-2)2.(x+1).(x-4)<0
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2< 0\\\left(x+1\right)< 0\\\left(x-4\right)< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 2\\x< -1\\x< 4\end{cases}}\)
Vậy x<(-1)
c)Từ đề bài, ta suy ra:
\(\left(x-9\right)< 0\Leftrightarrow x< 9\)
d)\(\frac{5}{x}< 1\Leftrightarrow x< 5\)
\(\left(x-1\right)\left(x-2\right)>0\)
TH1: \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\Rightarrow x>2\)
TH2: \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\Rightarrow x< 1\)
a)
A=0
\(x\left(x-\dfrac{4}{9}\right)=0\)
x=0 hoặc x-4/9=0
x=0 hoặc x=4/9
b)
A>0
\(x\left(x-\dfrac{4}{9}\right)>0\)
TH1
x>0 và x-4/9 >0
x>0 và x>4/9
TH2
x<0 và x-4/9<0
x<0 và x<4/9
c)
A<0
\(x\left(x-\dfrac{4}{9}\right)< 0\)
TH1
x<0 và x-4/9>0
x<0 và x>4/9
TH2
x>0 và x-4/9 <0
x>0 và x<4/9