Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(7x^4-21x^3\right):\left(7x^2\right)+\left(10x+5x^2\right):\left(5x\right)\)
\(=x^2-3x+2x+x\)
\(=x^2\ge0\)
Vậy ...
bài 1:
a,\(\left(x+1\right)^3-\left(x+3\right)^2\cdot\left(x+1\right)+4x^2=\)-12
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1\right)^2-\left(x+3\right)^2]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot[\left(x+1+x+3\right)\cdot\left(x+1-x-3\right)]+4x^2=-12\)
\(\Rightarrow\left(x+1\right)\cdot\left(2x+4\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot2\cdot\left(x+2\right)\cdot\left(-2\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)\cdot\left(-4\right)+4x^2=-4\cdot3\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+2\right)-x^2=3\)
\(\Rightarrow x^2+2x+x+2-x^2=3\)
\(\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
A = (x4 + 2x3 + x2) + 4. ( x2 + x + 1) = (x2 + x)2 + 4. a = (a - 1)2 + 4a = a2 + 2a + 1 = (a + 1)2
\(A=\left(x^4+2x^3+x^2\right)+4.\left(x^2+x+1\right)\)
\(A=\left(x^2+x\right)^2+4.a\)
\(A=\left(a-1\right)^2+4a\)
\(A=a^2+2a+1\)
\(A=\left(a+1\right)^2\)
Ta có : \(A=x^4+2x^3+5x^2+4x+4\)
\(=\left(x^4+x^3+x^2\right)+\left(x^3+x^2+x\right)+\left(3x^2+3x+3\right)+1\)
\(=x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+3\left(x^2+x+1\right)+1\)
\(=\left(x^2+x+1\right)\left(x^2+x+3\right)+1\)\(=a\left(a+2\right)+1=a^2+2a+1=\left(a+1\right)^2\)
Lời giải:
\(A=x^4+2x^3+5x^2+4x+4\)
\(=(x^4+2x^3+x^2)+4x^2+4x+4\)
\(=(x^2+x)^2+4(x^2+x)+4\)
\(=(x^2+x+2)^2=(x^2+x+1+1)^2=(a+1)^2\)