\(\frac{4}{x^2+1}\)

Hỏi a,A>3 khi nào

      b,A=3 khi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

\(A=x^2+\frac{4}{x^2+1}\)   

\(=x^2+1+\frac{4}{x^2+1}-1\)   

Áp dụng bất đẳng thức cauchy cho 2 số dương x^2 + 1 và 4 / x^2 + 1

\(x^2+1+\frac{4}{x^2+1}\ge2\sqrt{\left(x^2+1\right)\cdot\frac{4}{x^2+1}}\)   

\(x^2+1+\frac{4}{x^2+1}\ge4\)   

\(x^2+1+\frac{4}{x^2+1}-1\ge3\)   

\(A\ge3\)   

Dấu = xảy ra khi và chỉ khi 

\(x^2+1=\frac{4}{x^2+1}\)   

\(\left(x^2+1\right)^2=4\)   

\(\orbr{\begin{cases}x^2+1=2\\x^2+1=-2\end{cases}}\)   

\(\orbr{\begin{cases}x^2=1\\x^2=-3\left(sai\right)\end{cases}}\)   

\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)   

Vậy A > 3 khi x khác 1 và - 1 

A = 3 khi x = 1 hay x = - 1 

A < 3 vô nghiệm 

20 tháng 7 2021

\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)

\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)

vậy cả hai bđt dấu "=" xảy ra đồng thời

\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)

vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)

\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng

và bđt tương đương xảy ra dấu bằng

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)

\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)

\(0>2ab\)

\(ab< 0\)

rồi chia ra từng TH 

ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)

\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)

\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi 

bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)

\(< =>0\ge2ab\)

vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra

vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

câu d lập luận như các câu trên cậu làm nốt nha

29 tháng 7 2016

Mình làm cho 1 câu nhá và mình là con trai

1)

a)C=\(\frac{x}{\sqrt{x}-1}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}\) 

     =\(\frac{x\sqrt{x}+x}{x-1}-\frac{2x^2+x\sqrt{x}-x}{x\left(x-1\right)}\)

     =\(\frac{x^2\sqrt{x}-x^2-x\sqrt{x}-x}{x\left(x-1\right)}\)

     =\(\frac{x\left(x\sqrt{x}-x-\sqrt{x}-1\right)}{x\left(x-1\right)}\)

     =\(\frac{\left(x-1\right)\sqrt{x}-\left(x-1\right)}{x-1}\)

     =\(\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)

     =\(\sqrt{x}-1\)

b)thay x=3+\(\sqrt{8}\) vào biểu thức C=\(\sqrt{x}-1\)

ta được C=\(\sqrt{3+\sqrt{8}}-1\)\(\approx\)1,4142

c)Ta cho C>0

<=>\(\sqrt{x}-1>0\)

<=>\(\sqrt{x}>1\)

<=>x>1

C<0

<=>\(\sqrt{x}-1< 0\)

<=>x<1

tương tự C=0 thì x=1

nhớ k mình đấy nhé bạn mất 30 phút để viết đó :))

29 tháng 7 2016

ban oi

giúp mình bài nữa đi(zô trang mình xem)

23 tháng 10 2016

THCS pt

23 tháng 10 2016

làm đk chưa Bách Tễu?

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)