K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^2+8x+16-9=\left(x+4\right)^2-9\ge-9\forall x\)

Dấu '=' xảy ra khi x=-4

12 tháng 9 2021

\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)

\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(A=x^2-8x+y^2-y+68\)

\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)

\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)

Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42=\left(x^2+8x+16\right)+\left(4y^2+4y+1\right)+25=\left(x+4\right)^2+\left(2y+1\right)^2+25\ge25\)

Dấu = xảy ra khi x = -4; y = -1/2

12 tháng 9 2021

\(B=x^2+4y+4y^2+8x+42\)
\(B=x^2+8x+16+4y^2+4y+1+25\)
\(B=\left(x+4\right)^2\left(2y+1\right)^2+25\)
GTNN của B là 25
xảy ra khi (x+4)2=0 hoặc (2y+1)2=0
                 x+4=0     hoặc 2y+1=0
                 x=-4        hoặc 2y=-1
                 x= -4       hoặc   y=-1/2

31 tháng 8 2017

A = x2 - 4x + 7 

    = x( x - 4 ) + 7

Vì x( x - 4 ) \(\le\)0

=> Để x( x - 4 ) + 7 \(\le\)7

    => A        \(\ge\)- 7

Vậy GTNN A = - 7 khi x( x - 4 ) = - 7 

31 tháng 8 2017

Ta có : A = x- 4x + 7 

= x2 - 4x + 4 + 3

A = (x - 2)2 + 3 

Vì : \(\left(x-2\right)^2\ge0\forall x\) 

Nên :  A = (x - 2)2 + 3   \(\ge3\forall x\)

Vậy Amin = 3 khi x = 2

3 tháng 7 2016

\(A=2x^2+8x-24\)

\(=2\left(x^2+4x-12\right)\)

\(=2\left[x^2+4x-4-8\right]\)

\(=2\left[\left(x-2\right)^2-8\right]\)

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2-8\ge-8\)

\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)

Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)

3 tháng 7 2016

\(B=x^2-8x+5=x^2-8x+16-9\)

\(=x^2-2\left(4x\right)+4^2-9\)

\(=\left(x-4\right)^2-9\)

\(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2-9\ge-9\)

Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

27 tháng 7 2023

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

4 tháng 11 2016

A = 2x2 - 8x + 2017

A = 2x2 - 4x - 4x + 8 + 2009

A = 2x.(x - 2) - 4.(x - 2) + 2009

A = (x - 2)(2x - 4) + 2009

A = 2.(x - 2)2 + 2009 \(\ge2009\)

Dấu "=" xảy ra khi (x - 2)2 = 0

=> x - 2 = 0

=> x = 2

Vậy GTNN của A là 2009 khi x = 2

4 tháng 11 2016

A = 2x2 - 8x + 2017

A = 2x2 - 4x - 4x + 8 + 2009

A = 2x.(x - 2) - 4.(x - 2) + 2009

A = (x - 2)(2x - 4) + 2009

A = 2.(x - 2)2 + 2009 ≥2009≥2009

Dấu "=" xảy ra khi (x - 2)2 = 0

=> x - 2 = 0

=> x = 2

Vậy GTNN của A là 2009 khi x = 2

4 tháng 11 2016

GTNN là 2009

6 tháng 5 2022

`A(x)=x^2-x-2`

`A(x)=x^2-2.x. 1/2+1/4-9/4`

`A(x)=(x-1/2)^2-9/4`

 Vì `(x-1/2)^2 >= 0 AA x`

 `=>(x-1/2)^2-9/4 >= -9/4 AA x`

Hay `A(x) >= -9/4 AA x`

Dấu "`=`" xảy ra `<=>(x-1/2)^2=0=>x-1/2=0=>x=1/2`

Vậy `GTN N` của `A(x)` là: `-9/4` khi `x=1/2`