Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(A\left(x\right)=x^2+3x-4=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x+4\right)\left(x-1\right)\)
A(x) >0 => (x+4)(x-1) cùng dấu
TH1: x+4; x-1 cùng âm \(\hept{\begin{cases}x+4< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 1\end{cases}\Leftrightarrow}x< -4}\)
TH2: x+4;x-1 cùng dương \(\hept{\begin{cases}x+4>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>1\end{cases}\Leftrightarrow}x>1}\)
3. \(A\left(x\right)=\left(x+4\right)\left(x-1\right)\)
A(x) <0 => \(\orbr{\begin{cases}x+4< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< -4\\x< 1\end{cases}}\)
Vậy x<-4 hoặc x<1 thì A(x)<0
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
a) P (x) = 3x-12 = 0
3x = 0+12
3x=12
x = 4
vay nghiem cua da thuc P (x) = 4
b) xet : x^2 > 0 => 2x^2>0
vay da thuc Q(x) khong co nghiem
a/ nghiệm cua đa thức p(x) tại giá trị P(x)=0
P(X)=3x-12=0
vậy x=4
b/Q(x)=2x^2+1
vì 2x^2>hoặc =0 suy ra 2x^2+1>hoặc =1 khác 0
vậy đa thức Q(x) không có nghiện
BẠN THẤY ĐÚNG THÌ K CHO MÌNH NHÉ.... BẠN XEM LẠI ĐỀ CÂU C RỒI MÌNH GIẢI CHO
1: Đặt A(x)=0
⇔\(x^2+3x-4=0\)
\(\Leftrightarrow x^2+4x-x-4=0\)
\(\Leftrightarrow x\left(x+4\right)-\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy: x=-4 và x=1 là nghiệm của đa thức \(A\left(x\right)=x^2+3x-4\)
2: Để A(x)>0 thì (x+4)(x-1)>0
Trường hợp 1:
\(\left\{{}\begin{matrix}x+4>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x>1\end{matrix}\right.\Leftrightarrow x>1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+4< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 1\end{matrix}\right.\Leftrightarrow x< -4\)
Vậy: Khi x>1 hoặc x<-4 thì A(x)>0
3: Để A(x)<0 thì (x+4)(x-1)<0
Trường hợp 1:
\(\left\{{}\begin{matrix}x+4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4< x\\x< 1\end{matrix}\right.\Leftrightarrow-4< x< 1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+4< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4>x\\x>1\end{matrix}\right.\Leftrightarrow-4>x>1\Leftrightarrow x\in\varnothing\)
Vậy: khi -4<x<1 thì A(x)<0
4: Ta có: \(A\left(x\right)=x^2+3x-4\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{25}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của đa thức \(A\left(x\right)=x^2+3x-4\) là \(-\frac{25}{4}\) khi \(x=-\frac{3}{2}\)