Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Giải:
a) \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+15\)
\(\Leftrightarrow P\left(x\right)=5x^5+7x-4x^2+15\)
\(\Leftrightarrow P\left(x\right)=5x^5-4x^2+7x+15\)
\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)
\(\Leftrightarrow Q\left(x\right)=5x^5+3x-4x^2+8\)
\(\Leftrightarrow Q\left(x\right)=5x^5-4x^2+3x+8\)
b) \(P\left(x\right)-Q\left(x\right)\)
\(=5x^5-4x^2+7x+15-\left(5x^5-4x^2+3x+8\right)\)
\(=5x^5-4x^2+7x+15-5x^5+4x^2-3x-8\)
\(=4x+7\)
Để đa thức trên có nghiệm thì
\(4x+7=0\)
\(\Leftrightarrow4x=-7\)
\(\Leftrightarrow x=-\dfrac{7}{4}\)
Vậy ...
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)
\(=(5x^4+x^4)+6x^3-5x-5-12\)
\(=6x^4+6x^3-5x-17\)
\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)
\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)
\(=6x^4+6x^3-2x^2-5x\)
a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)
\(=6x^4-17+6x^3-5x\)
\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)
\(=6x^4-5x+6x^3-2x^2\)
Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)
\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)
b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =))
\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)
\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)
=> vô nghiệm =))
a) (+) \(A\left(x\right)=6x^4-2x^3+5x-8x-6x^4+4x^3\)
\(A\left(x\right)=\left(6x^4-6x^4\right)+\left(-2x^3+4x^3\right)+\left(5x-8x\right)\)
\(A\left(x\right)=2x^3-3x\)
(+) \(B\left(x\right)=7x^5-3x+6x^2-8x-7x^5+x^3\)
\(B\left(x\right)=\left(7x^5-7x^5\right)+x^3+6x^2+\left(-3x-8x\right)\)
\(B\left(x\right)=x^3+6x^2-11x\)
b)
Đa thức \(A\left(x\right)=2x^3-3x\) có bậc 3
Đa thức \(B\left(x\right)=x^3+6x^2-11x\) có bậc 3
c) \(A\left(x\right)+B\left(x\right)=\left(2x^3-3x\right)+\left(x^3+6x^2-11x\right)\)
\(A\left(x\right)+B\left(x\right)=2x^3-3x+x^3+6x^2-11x\)
\(A\left(x\right)+B\left(x\right)=\left(2x^3+x^3\right)+6x^2+\left(-3x-11x\right)\)
\(A\left(x\right)+B\left(x\right)=3x^3+6x^2-14x\)
d) \(B\left(x\right)-A\left(x\right)=\left(x^3+6x^2-11x\right)-\left(2x^3-3x\right)\)
\(B\left(x\right)-A\left(x\right)=x^3+6x^2-11x-2x^3+3x\)
\(B\left(x\right)-A\left(x\right)=\left(x^3-2x^3\right)+6x^2+\left(-11x+3x\right)\)
\(B\left(x\right)-A\left(x\right)=-x^3+6x^2-8x\)