\(A=\sqrt{x+3}+\sqrt{5-x}\) 

Chứng minh A\(\le\)4

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Áp dụng bât đẳng thức Bunhiacoxki , ta có : \(A^2=\left(1.\sqrt{x+3}+1.\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+5-x\right)\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}-3\le x\le5\\\sqrt{x+3}=\sqrt{5-x}\end{cases}\Leftrightarrow x=1}\)

18 tháng 11 2018

Ta có \(B=\sqrt{x+3}+\sqrt{5-x}\Leftrightarrow B^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}=8+2\sqrt{\left(x+3\right)\left(5-x\right)}\) Ta có \(\sqrt{\left(x+3\right)\left(5-x\right)}\ge0\Leftrightarrow2\sqrt{\left(x+3\right)\left(5-x\right)}\ge0\Leftrightarrow8+2\sqrt{\left(x+3\right)\left(5-x\right)}\ge8\Leftrightarrow B^2\ge8\Leftrightarrow B\ge2\sqrt{2}\)Vậy \(2\sqrt{2}\le B\)(1)

Áp dụng bđt Bunhia copski ta có

\(B^2=\left(\sqrt{x+3}+\sqrt{5-x}\right)^2=\left(\sqrt{x+3}.1+\sqrt{5-x}.1\right)^2\le\left[\left(\sqrt{x+3}\right)^2+\left(\sqrt{5-x}\right)^2\right]\left(1^2+1^2\right)=8.2=16\Leftrightarrow B^2\le16\Leftrightarrow B\le4\)(2)

Từ (1),(2)\(\Rightarrow2\sqrt{2}\le B\le4\)

NV
23 tháng 10 2019

1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)

\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)

3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)

\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Do \(\left(m-1\right)m\left(m+1\right)\)\(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36

NV
23 tháng 10 2019

4/

Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)

\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)

Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow2\le x;y;z\le3\)\(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)

Khi đó ta có:

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế:

\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

30 tháng 8 2018

Bài 1 : Ta có :

\(A=\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)

\(A\sqrt{2}=\sqrt{6x+2\sqrt{6x-1}}+\sqrt{6x-2\sqrt{6x-1}}\)

\(=\sqrt{6x-1+2\sqrt{6x-1}+1}+\sqrt{6x-1-2\sqrt{6x-1}+1}\)

\(=\sqrt{\left(\sqrt{6x-1}+1\right)^2}+\sqrt{\left(\sqrt{6x-1}-1\right)^2}\)

\(=\left|\sqrt{6x-1}+1\right|+\left|\sqrt{6x-1}-1\right|\)

\(=\sqrt{6x-1}+1+\sqrt{6x-1}-1\)

\(=2\sqrt{6x-1}\)

\(\Rightarrow A=\sqrt{2}\left(\sqrt{6x-1}\right)\)

Thay \(x=4+\sqrt{10}\) vào A ta được :

\(A=\sqrt{2}.\sqrt{6\left(4+\sqrt{10}\right)-1}=\sqrt{2}.\sqrt{24+6\sqrt{10}-1}\)

\(=\sqrt{2}.\sqrt{23+6\sqrt{10}}=\sqrt{46+12\sqrt{10}}\)

\(=\sqrt{36+12\sqrt{10}+10}=\sqrt{\left(6+\sqrt{10}\right)^2}=6+\sqrt{10}\)

Vậy \(A=6+\sqrt{10}\) tại \(x=4+\sqrt{10}\)

31 tháng 8 2018

Quang Nguyễn Yep

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

AH
Akai Haruma
Giáo viên
15 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$