Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)
\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
\(S_{min}=1\) khi \(a=b=c=1\)
GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)
Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)
\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)
Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị
\(\Rightarrow P=1\)
Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)
\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)
TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ
TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)
\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)
Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)
Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ
Nhân 2 vế của \(pt\left(2\right)\) cho \(\sqrt{x^2+2017}-x\) ta có:
\(\left(\sqrt{x^2+2017}-x\right)\left(x+\sqrt{x^2+2017}\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow\left(x^2+2017-x^2\right)\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow2017\left(y+\sqrt{y^2+2017}\right)=2017\left(\sqrt{x^2+2017}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2017}=\sqrt{x^2+2017}-x\)
Tương tự cũng có: \(x+\sqrt{x^2+2017}=\sqrt{y^2+2017}-y\)
Cộng theo vế 2 đẳng thức trên ta có:
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\Leftrightarrow x=-y\)
\(\Rightarrow-3y+y^2=4\Rightarrow\orbr{\begin{cases}y=-1\\y=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
\(x=2-\sqrt{3}\)
suy ra
\(x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)
bây giờ thì dễ rồi
thay vào nhé
\(A=6\left(-1\right)^{2017}+8\left(-1\right)^{2017}+2016=2002\)
Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)
\(=\left(1+1+1\right)^2=9\)
Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)
Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
Vế phải là 17 hay 2017 bạn? Là 17 thì ko giải được đâu
2017, mình ghi nhầm ấy mà
mà mình giải được rồi ^^