\(a=\sqrt{2}-1;b=\frac{1}{\sqrt{2}-1}\)

Hãy tính  S = a7+b7

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

nhận xét: \(b=\frac{1}{a}\) => S = \(a^7+\frac{1}{a^7}\)

Đặt u = \(a+\frac{1}{a}\)

Ta có: \(a^2+\frac{1}{a^2}=\left(a+\frac{1}{a}\right)^2-2=u^2-2\)

\(a^3+\frac{1}{a^3}=\left(a+\frac{1}{a}\right)^3-3\left(a+\frac{1}{a}\right)=u^3-3u\)

\(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=\left(a^5+\frac{1}{a^5}\right)+\left(a+\frac{1}{a}\right)\)

=> \(a^5+\frac{1}{a^5}=\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)-\left(a+\frac{1}{a}\right)\)= (u2 - 2)(u3 - 3u) - u = u5- 5u3 + 5u

+) \(\left(a^2+\frac{1}{a^2}\right)\left(a^5+\frac{1}{a^5}\right)=a^7+\frac{1}{a^3}+a^3+\frac{1}{a^7}=\left(a^7+\frac{1}{a^7}\right)+\left(a^3+\frac{1}{a^3}\right)\)

=> S  = \(a^7+\frac{1}{a^7}=\left(u^5-5u^3+5u\right)\left(u^2-2\right)-\left(u^3-3u\right)\)

= ....

18 tháng 11 2015

Mình không gửi dc tin nhắn nữa nhé. Mọi người thông cảm. Chúc vui vẻ. ngủ ngon.

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)

NV
12 tháng 10 2020

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(\sqrt{36}-1\right)=10>9=A\)

\(\Rightarrow B>A\)

NV
12 tháng 10 2020

Để biểu thức B có nghĩa thì \(xy\ne0\)

Khi đó ta có:

\(x^3+y^3=2x^2y^2\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)

\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ

19 tháng 5 2017

Ta có: \(a+b=\dfrac{-1+\sqrt{2}}{2}+\dfrac{-1-\sqrt{2}}{2}=-1\)

\(ab=\dfrac{-1+\sqrt{2}}{2}.\dfrac{-1-\sqrt{2}}{2}=\dfrac{-1}{4}\)

\(\left(a+b\right)^2=a^2+b^2+2ab=1\)

\(\Rightarrow a^2+b^2+2.\dfrac{-1}{4}=1\)\(\Rightarrow a^2+b^2=\dfrac{3}{2}\) (1)

\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-1\)

\(\Rightarrow a^3+b^3+3.\dfrac{-1}{4}.\left(-1\right)=-1\)\(\Rightarrow a^3+b^3=\dfrac{-7}{4}\) (2)

Từ (1) và (2) suy ra \(\left(a^2+b^2\right)\left(a^3+b^3\right)=\dfrac{3}{2}.\dfrac{-7}{4}=\dfrac{-21}{8}\)

\(\Rightarrow a^5+a^3b^2+a^2b^3+b^5=\dfrac{-21}{8}\)

\(\Rightarrow a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{-21}{8}\)

\(\Rightarrow a^5+b^5+\dfrac{1}{16}.\left(-1\right)=\dfrac{-21}{8}\)\(\Rightarrow a^5+b^5=\dfrac{-41}{16}\) (3)

Từ (1) và (3) suy ra \(\left(a^2+b^2\right)\left(a^5+b^5\right)=\dfrac{3}{2}.\dfrac{-41}{16}=\dfrac{-123}{32}\)

\(\Rightarrow a^7+a^5b^2+a^2b^5+b^7=\dfrac{-123}{32}\)

\(\Rightarrow a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{-123}{32}\)

\(\Rightarrow a^7+b^7+\dfrac{1}{16}.\dfrac{-7}{4}=\dfrac{-123}{32}\)\(\Rightarrow a^7+b^7=\dfrac{-239}{64}\)

Vậy \(a^7+b^7=\dfrac{-239}{64}\)

NV
17 tháng 6 2019

\(a\sqrt{b}-b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(7\sqrt{7}+3\sqrt{3}=\left(\sqrt{7}+\sqrt{3}\right)\left(7-\sqrt{21}+3\right)=\left(\sqrt{7}+\sqrt{3}\right)\left(10-\sqrt{21}\right)\)

\(a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)

\(1-a\sqrt{a}=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)

\(x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(\left(\sqrt{2}+1\right)^2-4\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

\(\left(\sqrt{5}+2\right)^2-8\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

2 cái trên đều áp dụng HĐT \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)

\(5\sqrt{2}-2\sqrt{5}=\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)\)