Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
\(\widehat{AOM}=2-\widehat{BOM}=2-90^o\)
\(\widehat{BON}=2-\widehat{AON}=2-90^o\)
\(\Rightarrow\widehat{AOM}=\widehat{BON}\)
\(b)\)
Ox là tia phân giác của \(\widehat{AOM}\Rightarrow\widehat{xOA}=\frac{1}{2}\widehat{AOM}=\frac{1}{2}\left(2-90^o\right)\)
Oy là tia phân giác của \(\widehat{BON}\Rightarrow\widehat{yOB}=\frac{1}{2}\widehat{BON}=\frac{1}{2}\left(2-90^o\right)\)
\(\Rightarrow\widehat{xOy}=\widehat{AOB}-2\frac{1}{2}\left(2-90^o\right)=2-2+90^o=90^o\)
Vậy \(Ox\perp Oy\)
a/
Ta có ^AOB = ^xOy - ^AOx - ^bOy = 90 -30-30 =30
=> ^AOB = ^AOx =30
=> Tia OA là tia phân giác của góc BOx
b/
Do Oy là pgiac ^AOC mà ^AOC = ^AOB + ^BOy = 60
=> ^COy = ^AOC=60
3a/
^AON = ^MON - ^AOM =120-90=30
^BON = ^MON - ^BON=120-90=30
=> ^AON=BOM
b/
^xOy = ^MON - ^NOx -^MOy = ^MON - ^AON/2-^BOM/2 = 120 -30/2 -30/2 =90
=> Ox vuông góc với Oy.
=> ^BOC = ^BOy + ^BOy = 60 + 30 =90
=> OB vuông góc với tia OC.
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a) Ta có:
\(\widehat{aOx}=\widehat{bOx}=\dfrac{\widehat{aOb}}{2}=\dfrac{150^0}{2}=75^0\) ( vì Ox là p.giác của \(\widehat{aOb}\) )
\(\widehat{aOx}+\widehat{aOy}=180^0\) ( kề bù )
\(\widehat{aOy}=\widehat{aOc}+\widehat{cOy}\)
⇒ \(\widehat{aOx}+\widehat{aOc}+\widehat{cOy}=180^0\)
⇒ \(\widehat{cOy}=180^0-\left(\widehat{aOx}+\widehat{aOc}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (1)
\(\widehat{xOb}+\widehat{bOy}=180^0\) ( kề bù )
\(\widehat{bOy}=\widehat{bOd}+\widehat{dOy}\)
⇒ \(\widehat{xOb}+\widehat{bOd}+\widehat{dOy}=180^0\)
⇒ \(\widehat{dOy}=180^0-\left(\widehat{xOb}+\widehat{bOd}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (2)
Từ (1) và (2) ⇒ \(\widehat{dOy}=\widehat{cOy}\left(=15^0\right)\)
⇒ Oy là phân giác của \(\widehat{dOc}\)
b) \(\widehat{xOc}=\widehat{aOx}+\widehat{aOc}\)
\(=75^0+90^0\)
\(=165^0\)
\(\widehat{yOb}=\widehat{yOd}+\widehat{dOb}\)
\(=15^0+90^0\)
\(=105^0\)
⇒ \(\widehat{xOC}>\widehat{yOB}\) \(\left(165^0>105^0\right)\)
a: Ta có: \(\widehat{AOM}+\widehat{NOM}=90^0\)
\(\widehat{BON}+\widehat{NOM}=90^0\)
Do đó: \(\widehat{AOM}=\widehat{BON}\)