Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
a: Sửa đề: Chứng minh ΔOCD=ΔOAB
Xét ΔOCD và ΔOAB có
OC=OA
\(\widehat{COD}=\widehat{AOB}\)(hai góc đối đỉnh)
OD=OB
Do đó: ΔOCD=ΔOAB
b: Xét ΔBHO vuông tại H và ΔDKO vuông tại K có
BO=DO
\(\widehat{BOH}=\widehat{DOK}\)(hai góc đối đỉnh)
Do đó: ΔBHO=ΔDKO
=>BH=DK
c: ta có;ΔOBA=ΔODC
=>\(\widehat{OBA}=\widehat{ODC}\)
Xét ΔMBO và ΔNDO có
MB=ND
\(\widehat{MBO}=\widehat{NDO}\)
BO=DO
Do đó: ΔMBO=ΔNDO
=>\(\widehat{MOB}=\widehat{NOD}\)
mà \(\widehat{MOB}+\widehat{MOD}=180^0\)(hai góc kề bù)
nên \(\widehat{NOD}+\widehat{MOD}=180^0\)
=>\(\widehat{MON}=180^0\)
=>M,O,N thẳng hàng
b: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a) xét tam giác AOB và tam giác COD, ta có :
OC = OA (gt)
góc DOC = góc BOA (đối đỉnh)
OD = OB (gt)
=> tam giác AOB = tam giác COD (c.g.c)
b) xét tam giác DON và tam giác BOM, ta có :
OD = OB (gt)
góc DON = góc BOM (đối đỉnh)
MN là cạnh chung
=> tam giác DON = tam giác BOM (c.g.c)
=> MB = ND (2 cạnh tương ứng)
a) xét tam giác AOB và tam giác COD, ta có :
OC = OA (gt)
góc DOC = góc BOA (đối đỉnh)
OD = OB (gt)
=> tam giác AOB = tam giác COD (c.g.c)
b) xét tam giác DON và tam giác BOM, ta có :
OD = OB (gt)
góc DON = góc BOM (đối đỉnh)
MN là cạnh chung
=> tam giác DON = tam giác BOM (c.g.c)
=> MB = ND (2 cạnh tương ứng)
b: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Bn tự vẽ hình nha!!1
a) Xét \(\Delta AOB \) và \(\Delta COD\) có:
OA = OC (gt)
\(\widehat{AOB} = \widehat{COD}\) (đối đỉnh)
OB = OD (gt)
\(\Rightarrow\)\(\Delta AOB = \Delta COD (cgc)\)
b) Xét \(\Delta DKO\) và \(\Delta BHO\) có:
\(\widehat{DKO} = \widehat{BHO} = 90^0\)
OD = OB (gt)
\(\widehat{DOK} = \widehat{BOH}\) (đối đỉnh)
\(\Rightarrow\)\(\Delta DKO = \Delta BHO (ch-gn)\)
\(\Rightarrow DK=BH\) (2 cạnh tương ứng)
c) Vì \(\Delta AOB = \Delta COD (cmt)\)
\(\Rightarrow\)\(\widehat{ABO} = \widehat{CDO}\) (2 góc tương ứng)
Xét \(\Delta ODN\) và \(\Delta OBM\) có:
OD = OB (gt)
\(\widehat{ODN} = \widehat{OBM}\) (cmt)
DN = BM (gt)
\(\Rightarrow\)\(\Delta ODN = \Delta OBM (cgc)\)
\(\Rightarrow\)\(\widehat{DON} = \widehat{BOM}\) (2 góc tương ứng)
Ta có:
\(\widehat{BOM} + \widehat{MOD} =180^0\) (kề bù)
mà \(\widehat{DON} = \widehat{BOM}\) (cmt)
\(\Rightarrow\)\(\widehat{DON} + \widehat{MOD} =180^0\)
Lại có: \(\widehat{DON} + \widehat{MOD} =\widehat{MON}\)
\(\Rightarrow\)\(\widehat{MON} = 180^0\)
hay M, O , N thẳng hàng
có cần vẽ hình ko bn