Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) Giả sử \(\sqrt{n}\)là số hữu tỉ => n là một số chính phương => \(a\sqrt{n}\)là số hữu tỉ
Đặt n=k2(k>=1) => \(b\sqrt{n+1}=b\sqrt{k^2+1}\)
Do k>=1 nên k2+1 không phải số chính phương =>\(b\sqrt{k^2+1}\)là số vô tỉ
Mà tổng số hữu tỉ với 1 số vô tỉ là số vô tỉ => đpcm
*) Giả sử \(\sqrt{n+1}\)là số hữu tỉ (chứng minh như trên)
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra