K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B={9;16;25;36;49;64;81;100}

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Số 24 có các ước là: \( - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24.\) Do đó \(A = \{  - 24; - 12; - 8; - 6; - 4; - 3; - 2; - 1;1;2;3;4;6;8;12;24\} \), \(n\;(A) = 16.\)

b) Số 1113305 gồm các chữ số: 1;3;0;5. Do đó \(B = \{ 1;3;0;5\} \), \(n\;(B) = 4.\)

c) Các số tự nhiên là bội của 5 và không vượt quá 30 là: 0; 5; 10; 15; 20; 25; 30. Do đó \(C = \{ 0;5;10;15;20;25;30\} \), \(n\,(C) = 7.\)

d) Phương trình \({x^2} - 2x + 3 = 0\) vô nghiệm, do đó \(D = \emptyset \), \(n\,(D) = 0.\)

26 tháng 5 2019

A = {n ∈ N | n là một ước chung của 24 và 30} = {1; 2; 3; 6}.

B = {n ∈ N | n là một ước của 6} = {1; 2; 3; 6}.

Ta thấy A ⊂ B và B ⊂ A nên A = B.

NV
4 tháng 6 2020

\(\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-3;y+2\right)\end{matrix}\right.\)

\(MA^2+MB^2=30\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2+\left(x-3\right)^2+\left(y+2\right)^2=30\)

\(\Leftrightarrow2x^2-10x+2y^2+2y-12=0\)

\(\Leftrightarrow x^2-5x+y^2+y-6=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\frac{25}{2}\)

Đường tròn có bán kính \(R=\sqrt{\frac{25}{2}}=\frac{5\sqrt{2}}{2}\)

16 tháng 11 2017

Đáp án: A

M là tập hợp các số nguyên chia hết cho 10. N là tập hợp các số nguyên chia hết cho 2. Các số chia hết cho 10 chắc chắn phải chia hết cho 2, ngược lại các số chia hết cho 2 thì chưa chắc chia hết cho 10. Do đó  M ⊂ N => M ∩ N  => A đúng, C sai.

P = {1; 3; 5; 15}; Q = {1; 2; 3; 5; 6; 10; 15; 30}. Do đó  P ⊂ Q => P ∩ Q =  P =>  B, D sai

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
a. $A=\left\{1; 2; 3; 4; 5\right\}$

$B=\left\{3; 4; 5;6 ;7\right\}$

$A\cap B=\left\{ 3; 4;5\right\}$

$A\cup B =\left\{1;2 ;3; 4; 5;6 ;7\right\}$

b.

$A\setminus B = (-2;-1)$

5 tháng 11 2023

cám ơn nha 

 

AH
Akai Haruma
Giáo viên
21 tháng 9 2020

Lời giải:

Phản chứng. Giả sử chia được như yêu cầu đề bài.

Gọi 18 số tự nhiên liên tiếp đó là $a,a+1,....,a+17$

Nếu $a\equiv 0,2,3,4,...., 18\pmod {19}$ thì trong 18 số $a,a+1,...,a+17$ luôn tồn tại "duy nhất" một số chia hết cho $19$

Do đó khi chia tập 18 số tự nhiên thành 2 tập rời rạc sẽ có 1 tập chia hết cho $19$ và tập còn lại không chia hết cho $19$ nên tích 2 tập đó không thể bằng nhau (1)

Nếu $a\equiv 1\pmod {19}$

$\Rightarrow a(a+1)...(a+17)\equiv 1.2...18=18!\pmod {19}$

Vì tích các phần tử thuộc A bằng tích các phần tử thuộc B và $A,B$ rời rạc nên nên $a(a+1)...(a+17)$ là số chính phương.

Đặt $a(a+1)...(a+17)$ là $x^2$ thì $x^2\equiv 18!\pmod {19}$

Theo định lý Wilson: $18!\equiv -1\pmod {19}$

$\Rightarrow x^2\equiv -1\pmod {19}$

Đến đây xét modulo 19 cho $x$ ta thấy vô lý (2)

Từ (1);(2) ta thấy điều giả sử là sai.

Do đó ta có đpcm.

24 tháng 9 2020

\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}=\dfrac{1}{b}+\dfrac{b}{a\left(a+b\right)}=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}