K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Theo đề bài ta có :

\(a^n=a^{10}\cdot\left(a^2\right)^{10}\cdot\left(a^3\right)^{10}...\left(a^{10}\right)^{10}\)

\(\Leftrightarrow a^n=a^{10}\cdot a^{20}\cdot a^{30}...a^{100}\)

\(\Rightarrow a^n=a^{10+20+30+...+100}\)

\(\Rightarrow n=10+20+30+...+100\)

\(\Rightarrow n=550\)

Đáp số : n = 550.

19 tháng 1 2017

a^10 = (a^3)^3 * a^1 mà a^3 chia hết cho 125

suy ra a^10 : 125 dư a

tk cho mình nha

29 tháng 5 2017

Bài 1 : tham khảo trong đây nè!!

Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath

29 tháng 5 2017

Câu 1 :

a. Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a \(\in\) z ) \(\Leftrightarrow\) a2 - n2 = 2006 \(\Leftrightarrow\) ( a - n ) ( a + n ) = 2006 (*)

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)

+ Nếu a,n cùng tính chất chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n) chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương.

b. n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1
+ 2006 = 3m+2007= 3(m+669) chia hết cho 3.


Vậy n2 + 2006 là hợp số.

Câu 2:Ta xét 3 trường hợp \(\dfrac{a}{\text{ }b}\) = 1 \(\dfrac{a}{b}\) > 1 \(\dfrac{a}{b}\) < 1
TH1: \(\dfrac{a}{b}\) =1 \(\Leftrightarrow a=b\) thì \(\dfrac{a+n}{b+n}\)thì\(\dfrac{a+n}{b+n}\) =\(\dfrac{a}{b}\) = 1

TH2: \(\dfrac{a}{b}>1\Leftrightarrow a+m>b+n\)

\(\dfrac{a+n}{b+n}\) có phần thừa so với 1 là \(\dfrac{a-b}{b}\)\(\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\) nên \(\dfrac{a+n}{b+n}< \dfrac{a}{b}\)

TH3: \(\dfrac{a}{b}< 1\Leftrightarrow a+n< b+n\)

Khi đó \(\dfrac{a+n}{b+n}\) có phần bù tới 1 là \(\dfrac{a-b}{b}\), \(\dfrac{a-b}{b}< \dfrac{b-a}{bb+n}\)

nên \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\)

b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và A < 1 nên theo a, nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\Rightarrow A< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}\)Do đó \(A< \dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{12}+1\right)}\)Vậy A<B

Câu 3: Đặt B1 = a1

B2= a1+a2

B3= a1+a2+a3

còn lại làm tương tự như trên đến B10 = a1+a2+ ...+ a10

Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư \(\in\) { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) \(\Rightarrow\) ĐPCM.

11 tháng 3 2016

=935 nhe bé