Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là tập con của B thì
m-1<4 và -2<2m+2 và m-1>-2 và 2m+2<4
=>m<5 và 2m+2>-2 và m>-1 và m<1
=>-1<m<1 và 2m>-4
=>m>-2 và -1<m<1
=>-1<m<1
Để A giao B khác rỗng thì \(\left[{}\begin{matrix}2< m+1\\m+4>-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m>-7\end{matrix}\right.\)
Để B là tập con của A thì
\(\left\{{}\begin{matrix}m-1< 4\\-2< 2m+2\\m-1>=-2\\4< 2m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< 5\\-2m< 4\\m>=-1\\2m+2>4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 5\\m>-2\\m>=-1\\m>1\end{matrix}\right.\)
=>\(1< m< 5\)
a.
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+4< -5\\m>11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -9\\m>11\end{matrix}\right.\)
b.
\(A\cap B\ne\varnothing\Leftrightarrow-9\le m\le11\)
Để A và B có nghĩa \(\Rightarrow\left\{{}\begin{matrix}m-1< 4\\2m+2>2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 5\\m>0\end{matrix}\right.\) (1)
Để A là tập con của B
\(\Rightarrow\left\{{}\begin{matrix}m-1\ge2\\2m+2\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\ge1\end{matrix}\right.\) \(\Rightarrow m\ge3\) (2)
Từ (1);(2) \(\Rightarrow5< m\le3\)
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
Lời giải:
Biểu diễn tập A,B trên trục số bạn sẽ thấy để $A\cap B$ nhận 1 giá trị duy nhất khi:
\(\left[\begin{matrix} m^2+1=3m-1\\ -3=4(\text{vô lý})\end{matrix}\right.\Rightarrow m^2-3m+2=0\Leftrightarrow (m-1)(m-2)=0\)
\(\Rightarrow \left[\begin{matrix} m=1\\ m=2\end{matrix}\right.\)
Thử lại thấy $m=2$ không thỏa mãn vì khi đó $3m-1>4$
Vậy có 1 giá trị nguyên của $m$ thỏa mãn
Đáp án C
Lời giải:
Để $A\cap B=\varnothing$ thì: \(\left[\begin{matrix} m+1\leq 1\\ m\geq 4\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\leq 0\\ m\geq 4\end{matrix}\right.\)
Do đó để $A\cap B\neq \varnothing$ thì $m\in (0;4)$
"khác rỗng"