Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
\(\frac{\left|x\right|-1}{\left|x\right|}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\left|x\right|-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
\(\Rightarrow C=\left(-\infty;-1\right)\cup\left(1;+\infty\right)\)
\(\Rightarrow B\cap C=(1;2019]\)
\(\Rightarrow A\cap B\cap C=\varnothing\Leftrightarrow\left[{}\begin{matrix}a>2019\\a+2\le1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>2019\\a\le-1\end{matrix}\right.\)
Để A có nghĩa \(\Rightarrow\frac{m+1}{2}\ge m-1\Rightarrow m\le3\)
a/ \(A\subset B\Leftrightarrow\left[{}\begin{matrix}\frac{m+1}{2}< -2\\m-1\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -5\\m\ge3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\m=3\end{matrix}\right.\)
b/ \(A\cap B=\varnothing\Leftrightarrow\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow-1\le m< 3\)
1: A={-3;-2;-1;0;1;2;3}
B={2;-2;4;-4}
A giao B={2;-2}
A hợp B={-3;-2;-1;0;1;2;3;4;-4}
2: x thuộc A giao B
=>\(x=\left\{2;-2\right\}\)
Để xác định các hệ số a và b ta dựa vào tọa độ các điểm mà đồ thị đi qua, lập hệ phương trình có hai ẩn a và b
a) Vì đồ thị đi qua \(A\left(\dfrac{2}{3};-2\right)\) nên ta có phương trình \(a.\dfrac{2}{3}+b=-2\)
Tương tự, dựa vào tọa độ của \(B\left(0;1\right)\) ta có \(0+b=1\)
Vậy, ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{2a}{b}+b=-2\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{9}{2}\\b=1\end{matrix}\right.\)
b) \(a=0;b=-2\)
c) \(a=\dfrac{1}{3};b=\dfrac{2}{3}\)
Lời giải:
a)
\(A=\left\{3; 0;1;2;4\right\}\)
\(B=\left\{5;0;1;2;4\right\}\)
b)
Bạn vẽ trục số biểu diễn $A,B$ tương ứng dòng trên và dòng dưới.
Nếu mà đoạn biểu diễn B nằm phía bên trái so với A thì để giao hai tập hợp khác rỗng thì \(b+1\geq a\)
Nếu mà đoạn biểu diễn B nằm phía bên phải so với A thì để giao 2 tập khác rỗng thì \(b\leq a+2\)
Vậy \(b+1\geq a\geq b-2\)
Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........
Ta có \(A\cap B=\varnothing khi\left[{}\begin{matrix}a+2< b\\b+1< a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a< b-2\\a>b+1\end{matrix}\right.\)
\(\Rightarrow A\cap B\ne\varnothing\) khi \(a\in\left[b-2;b+1\right]\)
A∩B ≠ ∅ \(\Leftrightarrow\left[{}\begin{matrix}a+2\ge b\\b+1\ge a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge b-2\\b\ge a-1\end{matrix}\right.\)
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}n>m+2\\m>n+1\end{matrix}\right.\)