\(A=\left[m;m+1\right]\) và \(B=\left(-1;3\right)\). điều...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 11 2017

Lời giải:

(Vẽ trục số để dễ tưởng tượng nhé)

Để \(A\cap B=\oslash\) thì có thể xảy ra 2 TH sau:

TH1: \(m+1\leq -1\Leftrightarrow m\leq -2\) . Khi đó khoảng biểu diễn của A nằm bên trái B và không trùng điểm nào với đoạn biểu diễn B

TH2: \(m\geq 3\) . Khi đó khoảng biểu diễn của A nằm bên phải B và không trùng điểm nào với đoạn biểu diễn B

19 tháng 9 2017

Ta có \(A\cap B=\varnothing khi\left[{}\begin{matrix}a+2< b\\b+1< a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a< b-2\\a>b+1\end{matrix}\right.\)

\(\Rightarrow A\cap B\ne\varnothing\) khi \(a\in\left[b-2;b+1\right]\)

27 tháng 6 2019

A∩B ≠ ∅ \(\Leftrightarrow\left[{}\begin{matrix}a+2\ge b\\b+1\ge a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge b-2\\b\ge a-1\end{matrix}\right.\)

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1

AH
Akai Haruma
Giáo viên
31 tháng 8 2018

Lời giải:

a)

\(A=\left\{3; 0;1;2;4\right\}\)

\(B=\left\{5;0;1;2;4\right\}\)

b)

Bạn vẽ trục số biểu diễn $A,B$ tương ứng dòng trên và dòng dưới.

Nếu mà đoạn biểu diễn B nằm phía bên trái so với A thì để giao hai tập hợp khác rỗng thì \(b+1\geq a\)

Nếu mà đoạn biểu diễn B nằm phía bên phải so với A thì để giao 2 tập khác rỗng thì \(b\leq a+2\)

Vậy \(b+1\geq a\geq b-2\)

NV
9 tháng 9 2020

\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge2\\m+4\le5\end{matrix}\right.\\m\ge8\end{matrix}\right.\) \(\Rightarrow m\ge8\)

Vậy \(A\cap B\ne\varnothing\Leftrightarrow m< 8\)

11 tháng 10 2020
https://i.imgur.com/qnt23NY.jpg
12 tháng 10 2020

Thank you!