K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

dễ thì làm cho ngta đi

 

19 tháng 5 2021

\(\dfrac{\sqrt{X}-4}{-4}\)ĐÁP ÁN A

B TỰ THAY 

NV
22 tháng 3 2022

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

7 tháng 5 2022

mik cần gấp ạ^^

 

25 tháng 7 2023

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Phần a,b,c bạn có thể tham khảo bài bên dưới. 

Phần d.

ĐKXĐ: $x\geq 0; x\neq 4$

$A>5\Leftrightarrow \frac{x+9}{2\sqrt{x}}>5$ ($x> 0$)

$\Leftrightarrow x+9> 10\sqrt{x}$

$\Leftrightarrow x-10\sqrt{x}+9>0$

$\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-9)>0$

\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}-1>0\\ \sqrt{x}-9>0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}-1<0\\ \sqrt{x}-9<0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>1\\ x>81\end{matrix}\right.\\ \left\{\begin{matrix} 0\leq x< 1\\ 0\leq x< 81\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x>81\\ 0\leq x< 1\end{matrix}\right.\)

Kết hợp với đkxđ suy ra $x>81$ hoặc $0< x< 1$

29 tháng 6 2023

a

Với: x \(\ge0,x\) \(\ne4\) có:

\(A=\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right):\left(\dfrac{\left(\sqrt{x}+2\right)^2}{x-4}-\dfrac{\left(\sqrt{x}-2\right)^2}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4}{x-4}-\dfrac{x-4\sqrt{x}+4}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-6\sqrt{x}}{x-4}\right)\)

\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{2\sqrt{x}}{x-4}\right)\)

\(=\dfrac{\left(x+9\right)\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}=\dfrac{x+9}{2\sqrt{x}}\)

b

Giải \(x^2-5x+4=0\)

Nhẩm nghiệm: a + b + c = 0 (1 - 5 + 4 = 0)

\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{4}{1}=4\)

Thay x = 1 vào A:

\(A=\dfrac{1+9}{2\sqrt{1}}=\dfrac{10}{2}=5\)

Thay x = 4 vào A:

\(A=\dfrac{4+9}{2.\sqrt{4}}=\dfrac{13}{2.2}=\dfrac{13}{4}\)

c

ĐK: x > 0

\(A=0\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}=0\)

=> \(x+9=0\Rightarrow x=-9\) (không thỏa mãn)

Vậy không xác định được giá trị x

d

ĐK: x > 0 

\(A>5\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}>5\)

\(\Leftrightarrow x+9>5.2\sqrt{x}\Leftrightarrow x+9>10\sqrt{x}\)

\(\Leftrightarrow\left(x+9\right)^2>\left(10\sqrt{x}\right)^2=100x\)

<=> \(x^2+18x+81-100x>0\)

<=> \(x^2-82x+81>0\)

<=> \(x^2-81x-x+81>0\)

<=> \(x\left(x-81\right)-\left(x-81\right)>0\)

<=> \(\left(x-1\right)\left(x-81\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1>0\\x-81>0\end{matrix}\right.\\\left[{}\begin{matrix}x-1< 0\\x-81< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x>81\end{matrix}\right.\\\left[{}\begin{matrix}x< 1\\x< 81\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>81\\x< 81\end{matrix}\right.\)

 

Vậy để A > 5 thì x > 81 và 0 < x < 81

a) Ta có: \(B=\left(\dfrac{3}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3\sqrt{x}-6-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-8}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để \(B=\dfrac{1}{3}\) thì \(\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}=\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}=2\)

\(\Leftrightarrow x=1\)(thỏa ĐK)

27 tháng 7 2021

a) B= \(\left(\dfrac{3\left(\sqrt{x}-2\right)-1\left(\sqrt{x}+2\right)}{x-4}\right):\left(\dfrac{\sqrt{x}-6+1\left(\sqrt{x}-2\right)}{x-2\sqrt{x}}\right)\)

   \(=\dfrac{2\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{2\sqrt{x}-8}\)=\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b) Để B=\(\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2=3\sqrt{x}\Rightarrow x=1\)

13 tháng 5 2023

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2\sqrt{x}+6}{x-9}\right):\dfrac{x-2\sqrt{x}}{\sqrt{x}-3}\left(x>3;x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{\sqrt{x}-3}{x-2\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left( \sqrt{x}+3\right)}-\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{x-2\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{x+3\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x-2\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{x-2\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{1}{\sqrt{x}}\)

 

 

6 tháng 7 2021

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\text{x > 0, x ≠ 1}\)

\(A=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)