\(a\in Z\)CMR \(a^5-a⋮30\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

      \(a^5-a\)

\(=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a^2-1\right)\left(a^2-4+5\right)\)

\(=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Số hạng 1 là tích của 5 thừa số nguyên liên tiếp nên nó chia hết cho 2,3 và 5 

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮30\)

Số hàng 2 có a - 1, a và a + 1 là 3 số nguyên liên tiếp \(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\Rightarrow5\left(a-1\right)a\left(a+1\right)⋮30\)

Vậy \(a\in Z\)thì \(a^5-a⋮30\)

a: \(A=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right)\left(n^2+n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n-1\right)\) là tích của bốn số nguyên tiếp

nên A chia hết cho 24

b: \(A=n^5-n=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(1)

Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(2\right)\)

Từ (1) và (2) suy ra A chia hết cho 30

c: Vì 7 là số nguyên tố

nên \(n^7-n⋮7\)

Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a^2-1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a^2-1\right)\)

Đến đây bạn lập luận đi !

3 tháng 9 2018

a5 - a

= a(a4 - 1)

= a(a2 - 1)(a2 + 1)

= a(a - 1)(a + 1)[(a2 - 4) + 5]

= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)

Ta có:

a(a - 1)(a + 1)(a - 2)(a + 2) chia hết cho 30

5a(a - 1)(a + 1) chia hết cho 30

=> a5 - a chia hết cho 30

3 tháng 9 2018

Cho a thuộc Z,Chứng minh a^5 - a chia hết cho 30,Phương pháp tách một hạng tử,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

31 tháng 10 2022

a: \(\dfrac{A}{B}=\dfrac{a^6-6a^5+10a^4+a^3+98a-26}{a^2-a+1}\)

 

\(=\dfrac{a^6-a^5+a^4-5a^5+5a^4-5a^3+4a^4-4a^3+4a^2+10a^3-10a^2+10a+6a^2-6a+6+94a-32}{a^2-a+1}\)

\(=a^4-5a^3+4a^2+10a+6+\dfrac{94a-32}{a^2-a+1}\)

b: Khi a=1 thì Q ko chia hết cho 6 nha bạn

8 tháng 8 2018

\(P=a^5-a\)

\(=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=5\left(a-1\right)a\left(a+1\right)+\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)\)

\(=5\left(a-1\right)a\left(a+1\right)+\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Nhân thấy   \(5\left(a-1\right)a\left(a+1\right)⋮5\);    \(\left(a-1\right)a\left(a+1\right)⋮3!=6\)

=>   \(5\left(a-1\right)a\left(a+1\right)⋮30\)

                    \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)

=>   \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮30\)

Vậy P chia hết cho 30

8 tháng 8 2018

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)

Tự cm tiếp

7 tháng 1 2019

a,\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)\)

\(=a\left(a+2\right)\left(a+1\right)⋮3⋮2\)

                                               \(⋮6\left(ĐPCM\right)\)

b,\(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\left(ĐPCM\right)\)

26 tháng 8 2015

Ta có: 30=2.3.5

a5-a=a(a4-1)=a(a2+1)(a2-1)=a(a+1)(a-1)(a2+1)=a(a+1)(a-1)(a2-4)+5a(a+1)(a-1)=a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1)

Vì a(a+1)(a-1)(a+2)(a-2) chia hết cho2;3;5( tích 5 số tự nhiên liên tiếp)

5a(a+1)(a-1) chia hết cho 2;3;5

Suy ra a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1) chia hết cho 5;2;3

Hay a5-a chia hết cho 30 (đpcm)