\(a\ge2,b\ge2\). CMR: \(2a\sqrt{b-2}+2b\sqrt{a-2}\le\sqrt{2}ab\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

7 tháng 3 2018

Bđt schur

AH
Akai Haruma
Giáo viên
7 tháng 3 2018

Lời giải:

Bài này thực chất không cần thiết phải có điều kiện \(1\leq a,b,c\leq 2\)

Chỉ cần \(a,b,c>0\) thôi em nhé.

Ta có: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow \frac{9abc}{3\sqrt[3]{abc}}\geq \frac{9abc}{a+b+c}\Leftrightarrow 3\sqrt[3]{a^2b^2c^2}\geq \frac{9abc}{a+b+c}\)

Do đó:
\(a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}(1)\)

Ta đi cm \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)(2)\)

\(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ac(a+c)\)

Đây chính là BĐT Schur bậc 3 (luôn đúng)

Từ (1); (2) \(\Rightarrow a^2+b^2+c^2+3\sqrt[3]{a^2b^2c^2}\geq 2(ab+bc+ac)\)

(đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$a^2+2b^2+ab=\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}$
Áp dụng BĐT Bunhiacopxky:

$[\frac{a^2}{2}+\frac{3b^2}{2}+\frac{(a+b)^2}{2}](2+6+8)\geq (a+3b+2a+2b)^2$

$\Rightarrow \sqrt{a^2+2b^2+ab}\geq \frac{3a+5b}{4}$

Hoàn toàn tương tự với các căn còn lại suy ra:
$\text{VT}\geq \frac{3a+5b}{4}+\frac{3b+5c}{4}+\frac{3c+5a}{4}=2(a+b+c)$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Bạn xem lại đề xem có nhầm không?

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

21 tháng 2 2019

\(VT=\sqrt{\frac{ab+2c^2}{a^2+ab+b^2}}+\sqrt{\frac{bc+2a^2}{b^2+bc+c^2}}+\sqrt{\frac{ca+2b^2}{c^2+ca+a^2}}\)

\(=\frac{ab+2c^2}{\sqrt{\left(a^2+ab+b^2\right)\left(ab+2c^2\right)}}+\frac{bc+2a^2}{\sqrt{\left(b^2+bc+c^2\right)\left(bc+2a^2\right)}}+\frac{ca+2b^2}{\sqrt{\left(c^2+ca+a^2\right)\left(ca+2b^2\right)}}\)

\(\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2c^2+2ab}+\frac{2\left(bc+2a^2\right)}{2a^2+b^2+c^2+2bc}+\frac{2\left(ca+2b^2\right)}{a^2+2b^2+c^2+2ca}\)

\(\ge\frac{ab+2c^2}{a^2+b^2+c^2}+\frac{bc+2a^2}{a^2+b^2+c^2}+\frac{ca+2b^2}{a^2+b^2+c^2}=ab+bc+ca+2\left(a^2+b^2+c^2\right)\)

\(=2+ab+bc+ca=VP\) (Do a2 + b2 + c2 = 1) => ĐPCM.

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{\sqrt{3}}.\)

12 tháng 11 2020

chăc là .............................. điền đi sẽ biếc a you ok ?

30 tháng 5 2017

\(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2a}}\ge\frac{2}{a+2b+1}+\frac{2}{b+2a+1}\)

\(\ge2.\frac{4}{3a+3b+2}=\frac{8}{\frac{3.2}{3}+2}=2\)

Dấu = xảy ra khi \(a=b=\frac{1}{3}\)

18 tháng 9 2018

\(\sqrt{\dfrac{a+b}{c+ab}}+\sqrt{\dfrac{b+c}{a+bc}}+\sqrt{\dfrac{c+a}{b+ac}}\)

30 tháng 9 2017

Bài này có xuất hiện rồi ,you vào mục tìm kiếm là thấy liền.

Lời giải vắn tắt:

\(A=\sum\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sum\dfrac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(1+ab-c^2\right)}}\ge\sum\dfrac{2\left(ab+2c^2\right)}{1+2ab+c^2}=\sum\dfrac{2\left(ab+2c^2\right)}{\left(a+b\right)^2+2c^2}\ge\sum\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}=\sum\left(ab+2c^2\right)=ab+bc+ca+2\)

( thay \(a^2+b^2+c^2=1\))