\(\ge\)2 TÌM GTNN CỦA S=\(a+\frac{1}{a^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(S=\frac{a}{8}+\frac{a}{8}+\frac{1}{a^2}+\frac{3a}{4}\ge3\sqrt[3]{\frac{a^2}{8a^2}}+\frac{3\cdot2}{4}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}.\)

Dấu '' = '' xảy ra khi \(\hept{\begin{cases}\frac{a}{8}\\a=2\end{cases}}=\frac{1}{a^2}\)

HT

27 tháng 12 2021

\(S=a+\frac{1}{a^2}=\frac{3a}{4}+\frac{a}{8}+\frac{a}{8}+\frac{1}{a^2}.\)

Theo bất đẳng thức Cô - si cho 3 số \(\frac{a}{8};\frac{a}{8};\frac{1}{a^2}>0\)ta có :

DD
9 tháng 3 2021

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(S=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

Dấu \(=\)xảy ra khi \(a=b\).

Vậy \(minS=2\).

9 tháng 3 2021

\(S=\frac{a^2+b^2}{ab}=\frac{a^2}{ab}+\frac{b^2}{ab}\ge\frac{\left(a+b\right)^2}{2ab}\)( Cauchy-Schwarz dạng Engel )

Lại có : \(2ab\le\frac{\left(a+b\right)^2}{2}\)( AM-GM )

\(\Rightarrow\frac{1}{2ab}\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{2}{\left(a+b\right)^2}\Rightarrow\frac{\left(a+b\right)^2}{2ab}\ge2\)

Dấu "=" xảy ra <=> a = b

Vậy MinS = 2

26 tháng 12 2016

a) giả sử \(x\ge y\ge3\)

P(x)=x+1/x

P(y)=y+1/y

P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A

\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)

Kết luận a cành lớn thì P(a) càng lớn

=> Pmin=P(3)=3+1/3=10/3

26 tháng 12 2016

Ok ta cần chứng minh A>=0

\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)

\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)

\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)

27 tháng 6 2016

Ta có:\(P=a+\frac{1}{a^2}\ge2+\frac{1}{2^2}=2+\frac{1}{4}=\frac{9}{4}\)

\(\Rightarrow P\ge\frac{9}{4}\)

Vậy MinP=\(\frac{9}{4}\)

27 tháng 6 2016

Bảo Bình:dấu "=" xảy ra khi?

3 tháng 5 2019

Làm ơn giải giùm đi

3 tháng 5 2019

BĐT \(\frac{a^3}{2}+\frac{b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\) không cần chứng minh phải không?Thế thì bài này khá đơn giản mà?

\(A=4\left(a^3+b^3\right)+\frac{1}{ab}=8\left(\frac{a^3}{2}+\frac{b^3}{2}\right)+\frac{1}{ab}\)

\(\ge8\left(\frac{a+b}{2}\right)^3+\frac{1}{\frac{\left(a+b\right)^2}{4}}=1+4=5\)

3 tháng 1 2017

chịu đó bằng lệch

3 tháng 1 2017

thế thì im lặng đi e

13 tháng 12 2017

\(áp\)\(dụng\)\(BĐT\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(ta\)\(có\)\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}\)

\(\Rightarrow P\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)

          \(=\frac{3a^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)

            \(\ge\frac{3a^2}{b^2+c^2}+2\ge3+2=5\)        

dấu = xảy ra khi \(a^2=2b^22c^2\)

13 tháng 12 2017

Những bài ntn chúng ta nên nhẩm ngiệm để cô si

ta có A=\(\frac{a^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{4b^2}+\frac{b^2}{a^2}+\frac{a^2}{4c^2}+\frac{c^2}{a^2}+\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\)

Áp dụng bđt cô si cho cặp sô thứ 1, cho cặp số thứ 2

Ta có\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}=4\Rightarrow\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\ge3\)

+ hết vào ...=> A>=...

dấu = xáy ra <=> b=c=a=1/căn(2)

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)