\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

a) Tìm ĐKXĐ và rút gọn

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

a, \(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}=\frac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)ĐK : \(x\ne1;x\ge0\)

\(=\frac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\frac{\sqrt{x}}{\sqrt{x}-1}\)

b, Thay \(x=\frac{9}{4}\Rightarrow\sqrt{x}=\frac{3}{2}\)vào biểu thức A ta được 

\(\frac{\frac{3}{2}}{\frac{3}{2}-1}=\frac{\frac{3}{2}}{\frac{1}{2}}=3\)Vậy với x = 9/4 thì A = 3 

c, Ta có : \(A=\frac{9}{4}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}-1}=\frac{9}{4}\Rightarrow4\sqrt{x}=9\sqrt{x}-9\)

\(\Leftrightarrow5\sqrt{x}=9\Leftrightarrow\sqrt{x}=\frac{9}{5}\Leftrightarrow x=\frac{81}{25}\)

Vậy với A = 9/4 thì x = 81/25 

21 tháng 6 2021

\(ĐKXĐ=x\ne1;x>0\)

\(A=\frac{\sqrt{x}^3+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

\(A=\frac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(A=\frac{\sqrt{x}^3+1-\sqrt{x}^3+\sqrt{x}+x-1}{x-1}\)

\(A=\frac{\sqrt{x}+x}{x-1}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(b,A=\frac{\sqrt{\frac{9}{4}}}{\sqrt{\frac{9}{4}}-1}=\frac{\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{2}{\frac{1}{2}}}=3\)

\(c,\frac{5}{4}=\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(5\sqrt{x}-5=4\sqrt{x}\)

\(\sqrt{x}=5< =>x=25\)

21 tháng 6 2021

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

   \(A=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

       \(=\left[\frac{3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\left(\sqrt{x}+1\right)\)

       \(=\frac{3+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b) Ta có: \(x=\frac{4}{9}\)thỏa mãn ĐKXĐ

  \(\Rightarrow\)Thay \(x=\frac{4}{9}\)vào biểu thức A ta có:

\(A=\frac{\sqrt{\frac{4}{9}}+2}{\sqrt{\frac{4}{9}}-1}=\frac{\frac{2}{3}+2}{\frac{2}{3}-1}=\frac{\frac{8}{3}}{-\frac{1}{3}}=-8\)

c) Ta có: \(A=\frac{5}{4}\)\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\)

\(\Leftrightarrow4\left(\sqrt{x}+2\right)=5\left(\sqrt{x}-1\right)\)\(\Leftrightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow\sqrt{x}=13\)\(\Leftrightarrow x=169\)( thỏa mãn ĐKXĐ )

 Vậy \(x=169\)

21 tháng 6 2021

\(a,ĐKXĐ:x\ne1,x>0\)

\(A=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(A=\frac{3+\sqrt{x}-1}{x-1}.\frac{\sqrt{x}+1}{1}\)

\(A=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)

với \(x=\frac{4}{9}\)

\(< =>A=\frac{2+\sqrt{\frac{4}{9}}}{\sqrt{\frac{4}{9}}-1}\)

\(A=\frac{2+\frac{2}{3}}{\frac{2}{3}-1}=\frac{\frac{8}{3}}{\frac{-1}{3}}=-8\)

\(c,\frac{5}{4}=\frac{2+\sqrt{x}}{\sqrt{x}-1}\)

\(5\sqrt{x}-5=8+4\sqrt{x}\)

\(\sqrt{x}=13< =>x=169\)

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

16 tháng 8 2016

a) ĐKXĐ : \(x\ge0\)và \(x\ne1\)

Rút gọn : A =\(\frac{4}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)

              A = \(\frac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

              A =\(\frac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

              A =\(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

              A =\(\frac{1}{\sqrt{x}+1}\)

b) Thay \(x=\frac{1}{4}\) vao A ta được:

         A =\(\frac{1}{\sqrt{\frac{1}{4}}+1}=\frac{2}{3}\)

a, ĐKXĐ :\(x\ge0\)và \(x\ne1\)

Rút gọn :A =\(\frac{4}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)

             A =\(\frac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

            A =\(\frac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

            A = \(\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

            A = \(\frac{1}{\sqrt{x}+1}\)

b, Thay \(x=\frac{1}{4}\)vào A ta được:

      A = \(\frac{1}{\sqrt{\frac{1}{4}}+1}=\frac{2}{3}\)

Vậy với \(x=\frac{1}{4}\)thì A \(=\frac{2}{3}\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
17 tháng 8 2016

A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)

Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)

            \(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

            \(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

           \(A=\frac{3}{2-\sqrt{x}}\)

b) thay \(x=7+4\sqrt{3}\) vào A 

ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)

vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)

c)với\(x\ge0\) và \(x\ne4\)

Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)

                        \(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)

                         \(\Leftrightarrow21=-6+3\sqrt{x}\)

                          \(\Leftrightarrow21+6=3\sqrt{x}\)

                           \(\Leftrightarrow27=3\sqrt{x}\)

                            \(\Leftrightarrow\sqrt{x}=9\)

                           \(\Leftrightarrow x=81\)

Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)

7 tháng 3 2020

1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\)\(\sqrt{x}-3\rightarrow\sqrt{x-3}\)

Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)

a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b) Để \(M=\frac{3}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)

\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)(tm)

Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)

c) Khi x = 4

\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)

\(\Leftrightarrow M=\frac{2+2}{2+3}\)

\(\Leftrightarrow M=\frac{4}{5}\)

Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)

7 tháng 3 2020

Cho mik sửa ĐKXĐ: \(x\ne9\)nhé !

14 tháng 11 2021

a, đk : \(x\ge0;x\ne4\)

\(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x = 25 vào A ta được : \(\frac{5}{5-3}=\frac{5}{2}\)

c, Ta có : \(A=\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\Rightarrow3\sqrt{x}=-\sqrt{x}+2\Leftrightarrow4\sqrt{x}=2\Leftrightarrow x=\frac{1}{4}\)(tm) 

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với