Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số nguyên âm lớn nhất là -1 => y = -1
Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:
\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)= \(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)= \(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)
= \(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)= \(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)= \(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)= \(\frac{-37}{8}\left(\frac{-4}{3}\right)\)= \(\frac{37}{6}\)
Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)
A=mấy vậy bn ? Nếu A=\(\frac{x^3-x^2+0,3y}{x^2-y}\) thì lm thế này, nếu k pải thì lm tương tự
Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
y là số nguyên âm lớn nhất => y = -1
Với \(x=\frac{1}{2};y=-1\) thì \(A=\frac{\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^2+0,3.\left(-1\right)}{\left(\frac{1}{2}\right)^2-\left(-1\right)}=\frac{\frac{1}{8}-\frac{1}{4}-0,3}{\frac{1}{4}+1}=\frac{\frac{-17}{40}}{\frac{5}{4}}=\frac{-17}{50}\)
Với \(x=\frac{-1}{2};y=-1\) thì \(A=\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{-1}{2}\right)^2+0,3.\left(-1\right)}{\left(\frac{-1}{2}\right)^2-\left(-1\right)}=\frac{\frac{-1}{8}-\frac{1}{4}-0,3}{\frac{1}{4}+1}=\frac{\frac{-27}{40}}{\frac{5}{4}}=\frac{-27}{50}\)
Vậy....
Câu 1 mình nghĩ nó khá đơn giản rồi, bạn tính ra ngay thôi
Câu 2: Mình nghĩ là tìm min chứ ko phải max
Vì \(\left(-\frac{2}{3}+\frac{1}{2}x\right)^2\ge0\Rightarrow A=\left(-\frac{2}{3}+\frac{1}{2}x\right)^2-2,5\ge2,5\)
\(\Rightarrow A_{min}=2,5\Leftrightarrow\left(-\frac{2}{3}+\frac{1}{2}x\right)^2=0\Leftrightarrow-\frac{2}{3}+\frac{1}{2}x=0\Leftrightarrow\frac{1}{2}x=\frac{2}{3}\Leftrightarrow x=\frac{4}{3}\)
A đạt giá trị nhỏ nhất là 2,5 khi x=4/3
Câu 3:
\(x=\frac{26}{7+b}\) âm khi 7+b âm <=> 7+b<0 <=> b<-7
vì b là số nguyên lớn nhất nên b=-8