Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
Mình nghĩ bạn viết hơi sai đề bài.
\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)
Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)
\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)
Khi đó:
\(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)
2) \(ĐKXĐ:x\notin\left\{-2;-3;-4\right\}\)
PT <=> \(x+\frac{x}{x+2}+\frac{x+3}{x^2+3x+2x+6}+\frac{x+4}{x^2+4x+2x+8}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{x\left(x+3\right)+2\left(x+3\right)}+\frac{x+4}{x\left(x+4\right)+2\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}-1=0\)
<=>\(x+\frac{x+1+1}{x+2}-1=0\)
<=>\(x+\frac{x+2}{x+2}-1=0\Leftrightarrow x+1-1=0\Leftrightarrow x=0\)
Vậy x=0 thì thỏa mãn PT
\(M=\frac{3}{x^2-4x+5}\)
\(=\frac{3}{x^2-4x+4+1}\)
\(=\frac{3}{\left(x-2\right)^2+1}\le3\)
\(Max_M=3\Leftrightarrow x=2\)
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
Bn chờ tí , mk làm cho