K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

a) ĐKXĐ :

\(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)

b) Với \(a\ge0\) và \(a\ne4\)

\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

Để A > 2

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}>2\)

Ta có :

\(\frac{\sqrt{a}-4}{\sqrt{a}-2}-2\)

\(=\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)

\(=\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\)

\(\)\(=\frac{-\sqrt{a}}{\sqrt{a}-2}\)

+) \(-\sqrt{a}< 0\forall a\)  \(\Rightarrow a>0\)

+) \(\sqrt{a}-2< 0\)   \(\Leftrightarrow a< 4\)

Vậy để A > 2 thì 0 < a < 4

c) Để A = 5

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\)

\(\frac{\left(\sqrt{a}-4\right)-5\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)}=0\)

\(\frac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}=0\)

\(\Rightarrow-4\sqrt{a}+6=0\)

\(\Rightarrow a=\frac{9}{4}\)( TMĐKXĐ )

Vậy để A = 5 thì a = 9/4

1 tháng 6 2018

a, A xđ <=> \(\hept{\begin{cases}\sqrt{a}+3\ne0\\a+\sqrt{a}-6\ne0\\2-\sqrt{a}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne2\\a\ne4\end{cases}};a\ne-3\)-3

b, rút gọn: A=\(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)để A> 2 <=> \(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)>2 <=> 1+\(\frac{-2}{\sqrt{a}-2}\)>2 <=> \(\frac{\sqrt{a}}{2-\sqrt{a}}\)>0

mà a\(\ge\)0 <=> \(\sqrt{a}\ge0\)=> \(2-\sqrt{a}\)>0 <=> a<4 

kết hợp với điều kiện, ta được: \(0\le a< 4;a\ne2\)

c, để A = 5 thì \(\frac{-2}{\sqrt{a}-2}\)+1=5 

<=>  \(\frac{-2}{\sqrt{a}-2}\)=4 

<=> \(a=\frac{9}{4}\)(t/m)

KL..............

Bài 2: 

\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)

\(\Leftrightarrow\sqrt{x+5}=7\)

=>x+5=25

hay x=18

đè hinh như là 6\(\sqrt{x}\) nhi bạn

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

7 tháng 8 2016

Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm

7 tháng 8 2016

1)đặt nhân tử chung quy đồng là xong

2)phân tích x+2cănx-3=(1-cănx)(3+cănx)

3)2a+căn a đặt căn a ra r rút gọn

23 tháng 7 2018

a) \(ĐKXĐ:x\ne4;x\ne9\)

b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

        \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

           \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517-1
x2\(\sqrt{2}\)\(\sqrt{5}\)\(\sqrt{1}\)\(\sqrt{7}\)\(\varnothing\)

Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }