\(\frac{n+8}{2n-5}\) sao cho n thuộc N và n khác 0 . Tìm các giá trị của n để a là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.

Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:

$n+8\vdots 2n-5$

$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$

$\Rightarrow 21\vdots 2n-5$

$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$

$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$

Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:

$n\in\left\{3; 6\right\}$ thỏa mãn 

14 tháng 2 2018

\(A=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để A nguyên thì  \(\frac{7}{n-1}\in Z\) Hay \(n-1\inƯ\left(7\right)\)

Bạn tự giải tiếp nk 

14 tháng 2 2018

Để A nguyên là tek nào...??

20 tháng 2 2020

Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1

\(\frac{n+4}{2n-1}\)\(\frac{2\left(n+4\right)}{2n-1}\)\(\frac{2n+8}{2n-1}\)\(\frac{2n-1+9}{2n-1}\)\(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1

=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}

=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}

=> n \(\in\){ 1;2;5; 0; -1; -4}

Vậy...

\(P=\frac{n+4}{2n-1}\)

\(\Leftrightarrow n+4⋮2n-1\)

\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)

\(\Leftrightarrow2n+8⋮2n-1\)

\(\Leftrightarrow2n-1+9⋮2n-1\)

Vì \(2n-1⋮2n-1\)

\(\Leftrightarrow9⋮2n-1\)

\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

Ta lập bảng xét giá trị 

2n-11-13-39-9
2n204-210-8
n102-15-4
13 tháng 5 2016

\(A=\frac{2n+8}{n-5}=\frac{2\left(n-5\right)+18}{n-5}=2+\frac{18}{n-5}\in Z\)

=>18 chia hết n-5

=>n-5\(\in\){±1;±2,±3,±6,±9,±18}

=>n\(\in\){6,4,7,3,8,2,11,-1,14,-4,22,-13}

23 tháng 2 2019

Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5

   suy ra (n+8).2 chia hết cho n+8 hay2n+16

Suy ra (2n+16)-(2n-5) chian hết cho 2n-5

suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}

                                                 suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}

                                                suy ra n thuộc{-8;13;4;1;6;-1;3;2}

Vậy n thuộc{-8;13;4;1;6;-1;3;2}