\(A=\frac{n-5}{n+1}\)          n thuộc Z và n khác -1

 tìm n để A tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

a) A thuộc Z
=> n + 1 chia hết cho n - 3

n - 3 + 4 chia hết cho n - 3

4 chia hết cho  n - 3

n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}

n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}

29 tháng 2 2016

a) để A nguyên

=>n-5 chia hết cho n+1

=>n+1-6 chia hết cho n+1

=>6 chia hết cho n-1

=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{0;2;-1;3;-2;4;-5;7}

2 tháng 7 2015

a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+2 chia hết cho d=> 6n+4 chia hết cho d

=> 6n+4 - (6n+3) chia hết cho d

=> 1 chia hết cho d

=>ƯCLN(2n+1,3n+2)=1

=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)

26 tháng 5 2016

\(A=\frac{n-5}{n+1}\)

Để A có giá trị nguyên 

=> n-5 chia hết n+1 

=> (n+1)-6 chia  hết n+1

=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)

Ta có bảng : 

n+11-12-23-36-6
n0-21-32-45-7

Câu b tự làm

26 tháng 5 2016

a, Để a nguyên thì n-5 chia hết cho n+1

suy ra n-1+6 chia hết cho n-1

Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1

Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}

suy ra n thuộc {2;0;3;-1;4;-2;7;-5}

Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}

b, Gọi d là ước nguyên tố chung của n-5 và n+1

Suy ra n-5 chia hết cho d, n+1 chia hết cho d

Suy ra (n+1)-(n-5) chia hết cho d

suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d

Do d nguyên tố nên d thuộc {2;3}

Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)

Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)

Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản

17 tháng 6 2019

tìm n nhỏ nhất nha

\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản

\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản

\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản

nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11

nên: n+2 là số nguyên tố lớn nhất lớn hơn 11

=> n+2=13=> n=11

17 tháng 6 2019

a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\)

Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau

Tương tự ta  có : 8 và (n+2) NTCN

                            9 và(n+2) NTCN

                            10 và (n+2) NTCN

                             11 và (n+2) NTCN

Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11

Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1

Vậy n + 2= 13 => n = 11

     

29 tháng 4 2020

Đặt: ( n + 3 ; n - 2 ) = d  ( d là số tự nhiên )

=> \(\hept{\begin{cases}n+3⋮d\\n-2⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n-2\right)⋮d\Rightarrow5⋮d\)

=> d = 1 hoặc d = 5 

Để A là phân số tối giản thì d = 1 => d khác 5 

+) Với d = 5 => \(\hept{\begin{cases}n+3⋮5\\n-2⋮5\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮5\\n-2⋮5\end{cases}\Rightarrow}\left(2n+6\right)-\left(n-2\right)⋮5\Rightarrow n+8⋮5\)

=> Tồn tại số nguyên k sao cho : n + 8 = 5k => n = 5k - 8 

=> n = 5k - 8 thì d = 5

=> n \(\ne\)5k - 8  thì d = 1 

Vậy n \(\ne\)5k - 8 thì A là phân số tối giản.

\(A=1+\frac{5}{n-2}\)(n khác 2)

Để A là phân số tối giản => \(\frac{5}{n-2}\)là phân số tối giản 

=> n-2 là số nguyên chẵn

=> n là số nguyên chẵn và n khác 2

14 tháng 4 2015

a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)

b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d 

->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1

UCLN(n,n+1) = 1 thì phân số tối giản

c. A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+1/49 - 1/50

= 1- 1/50 <1 ( Vì trừ đi 1 số lớn hơn 0)

 

14 tháng 4 2015

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\)

     tối giản