Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

\(\Rightarrow x-3⋮x^2+1\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)⋮x^2+1\)
\(\Rightarrow x^2-9⋮x^2+1\)
mà \(x^2+1⋮x^2+1\)
\(\Rightarrow x^2-9-x^2-1⋮x^2+1\Rightarrow10⋮x^2+1\)
Xét từng TH ra
P/s : x2+1 lẻ

\(A=\frac{1}{1+\frac{b}{a}+\left(\frac{b}{a}\right)^2}=\frac{1}{t^2+t+1}\) (chia cả tử và mẫu cho a2 rồi đặt \(t=\frac{b}{a}\))
Khi đó \(\frac{1}{2}\le t\le2\)
Ta có:
+) \(t\left(t-\frac{1}{2}\right)\ge0\Rightarrow t^2\ge\frac{1}{2}t\Rightarrow A=\frac{1}{t^2+t+1}\le\frac{1}{\frac{3}{2}t+1}\le\frac{1}{\frac{3}{2}.\frac{1}{2}+1}=\frac{4}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
+) \(t\left(t-2\right)\le0\Rightarrow t^2\le2t\Rightarrow A=\frac{1}{t^2+t+1}\ge\frac{1}{3t+1}\ge\frac{1}{3.2+1}=\frac{1}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
P/s: Em ko chắc!
Đúng rồi nha còn một cách nữa là biến đổi tương đương nha mn

Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)
Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)
Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)
Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố
Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)
\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)
Vì x, y, z là số nguyên dương nên x = y = z = 1
a) Để a thuộc Z => 8x+6 chia hết cho x^2+1 (do x thuộc Z)
=> (8x+6)(8x-6) chia hết cho x^2+1
=> 64x^2-36 chia hết cho x^2+1
=> 64x^2+64-100 chia hết cho x^2+1
=> 100 chia hết cho x^2+1
=> x^2+1 là ước của 100
Xong bạn lập bảng liệt kê các ước nguyên dương ra và tìm x là xong.
Giải giúp mình câu b) luôn đi Lili