Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
Ta có : \(\frac{20}{60.63}+\frac{20}{63.66}+.....+\frac{20}{117.120}+\frac{20}{2011}\)
\(=\left(\frac{20}{60.63}+\frac{20}{63.66}+.....+\frac{20}{117.120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+.....+\frac{3}{117.120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+.....+\frac{1}{117}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(=\frac{20}{3}.\frac{1}{120}+\frac{20}{2011}\)
\(=\frac{1}{18}+\frac{20}{2011}\)
Ta có:
\(A=\frac{20}{60.63}+\frac{20}{63.66}+...+\frac{20}{117.120}+\frac{20}{2011}\)
\(\Rightarrow A=\left(\frac{20}{60.63}+\frac{20}{63.66}+...+\frac{20}{117.120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{20}{2011}\)
\(\Rightarrow A=\frac{20}{3}.\frac{1}{120}+\frac{20}{2011}=\frac{1}{18}+\frac{20}{2011}\)
\(B=\frac{5}{40.44}+\frac{5}{44.48}+\frac{5}{48.52}+...+\frac{5}{76.80}+\frac{5}{2011}\)
\(\Rightarrow B=\left(\frac{5}{40.44}+\frac{5}{44.48}+\frac{5}{48.52}+...+\frac{5}{76.80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+\frac{1}{48}-\frac{1}{52}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2011}\)
\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2011}=\frac{1}{64}+\frac{5}{2011}\)
Ta có \(A=\frac{1}{18}+\frac{20}{2011}\) và \(B=\frac{1}{64}+\frac{5}{2011}\)
So sánh từng số hạng: \(\frac{1}{18}>\frac{1}{64};\frac{20}{2011}>\frac{5}{2011}\)
\(\Rightarrow A>B\)
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\text{ }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)
Vì \(a+b+c\ne-2011\)
\(\Rightarrow a+b+c+2011\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2011}=\frac{2011}{a}=\frac{a+b+c+2011}{b+c+2011+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=c\)
\(\frac{b}{c}=1\Rightarrow b=c\)
\(\Rightarrow a=b=c\)
\(\frac{c}{2011}=1\Rightarrow c=2011\)
\(\Rightarrow a+b+c=2011+2011+2011=6033\)
\(a< b+c\text{ tính chất cạnh của t/giác:}\Rightarrow7^a< 7^{b+c}\Rightarrow\frac{7^a}{7^{b+c}}< 1\)
\(\text{Với: phân số }\frac{a}{b}\text{ có a;b nguyên dương bé hơn 1 thì:}\frac{a+n}{b+n}>\frac{a}{b}\left(\text{n nguyên dương}\right)\)
nên áp dụng cộng tử và mẫu của phân số M cho 2019 rồi ra N>M