Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tại x = 16 thì:
\(A=\frac{2\sqrt{16}+1}{16+\sqrt{16}+1}=\frac{9}{21}=\frac{3}{7}\)
2) Ta có:
\(P=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\div\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(P=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)\)
\(P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
3) Ta có: \(M=\frac{P}{A}=\frac{\frac{2\sqrt{x}+1}{\sqrt{x}+1}}{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}+1\ge1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy Min(M) = 1 khi x = 0
\(A=\left(\frac{\sqrt{X}}{\sqrt{X}+1}+\frac{\sqrt{X}+1}{1-\sqrt{X}}+\frac{4\sqrt{X}+1}{X-1}\right)\left(\frac{X\sqrt{X}}{\sqrt{X}+1}-\sqrt{X}\right)\)
\(=\left(\frac{\sqrt{X}-\sqrt{X}-1+4\sqrt{X}+1}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\right)\left(X-\sqrt{X}\right)\)
\(=\frac{4\sqrt{X}}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}.\sqrt{X}\left(\sqrt{X}-1\right)\)
\(A=\frac{4X}{\sqrt{X}+1}\)
B) dễ rồi làm tiếp ik chỉ cần biến về \(\left(a+b\right)^2+hs\le hs\) là được
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)
\(=\left(2-\sqrt{3}\right)^2\)
\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)
\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)
\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)
\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)
\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)
=>pt vo nghiệm
d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)
\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)
\(\Leftrightarrow x=5\)
a) Ta có: \(x=9\)thỏa mãn đk
\(\Rightarrow\)Thay \(x=9\)vào biểu thức ta được:
\(A=\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=\frac{-9}{2}\)
b) Với x thỏa mãn ĐKXĐ thì ta có:
\(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}\)
\(=\frac{1}{\sqrt{x}+2}+\frac{x+14}{x-4}-\frac{4}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{x+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)+\left(x+12\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2+x+12-4\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
1. x = 9 => A = \(\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=-\frac{9}{2}\)
2. \(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}=\frac{\sqrt{x}-2+x+12-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
3. \(AB>-\frac{3}{4}\) <=> \(\frac{3\sqrt{x}}{1-\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+2}>-\frac{3}{4}\)
<=> \(-\frac{3\sqrt{x}}{\sqrt{x}+2}+\frac{3}{4}>0\)
<=> \(\frac{12\sqrt{x}-3\sqrt{x}-4}{4\left(\sqrt{x}+2\right)}< 0\)
<=> \(\frac{9\sqrt{x}-4}{4\sqrt{x}+8}< 0\)
Do \(4\sqrt{x}+8>0\)với mọi x => \(9\sqrt{x}-4< 0\) <=> \(x< \frac{16}{81}\)