Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét mẫu số 330,6-72:(a-6) Nếu a=6 thì biểu thức này sẽ không xác định hay A không xác định
b,\(\frac{39,48.17+83.39,48}{330,6-72:\left(a-6\right)}=\frac{39480}{3216}\)
\(\Rightarrow\frac{39,48.\left(83+17\right)}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(\frac{3948}{330,6-72:\left(a-6\right)}=\frac{1645}{134}\)
\(3948.134=1645.\left[330,6-72:\left(a-6\right)\right]\)
\(\Rightarrow330,6-72:\left(a-6\right)=321,6\)
\(72:\left(a-6\right)=9\)
\(a-6=8\)
\(a=14\)
c,Nhỏ nhất khi 330,6-72:(a-6)=1
72:(a-6)=329,6
a-6=45/206
a=1281/206
a)Với a = 88,ta thay vào biểu thức trên và có :
\(A=\frac{3990+820:\left(88-6\right)}{18,34.53+47.18,34+166}\)= \(\frac{3990+820:82}{18,34.\left(53+47\right)+166}=\frac{3990+10}{1834+166}=\frac{4000}{2000}=2\)
b) \(A=\frac{3990+820:\left(a-6\right)}{18,34.53+47.18,34}\)= \(\frac{3990+820:\left(a-6\right)}{2000}\)
Để A lớn nhất =) \(3990+820:\left(a-6\right)\)lớn nhất
=) \(820:\left(a-6\right)\)lớn nhất =) \(a-6\)bé nhất
Mà để \(820:\left(a-6\right)\)lớn nhất =) \(820:\left(a-6\right)\in N\)và khác 0
=) \(a-6\in N\)và khác 0 =) \(a-6=1\)=) \(a=1+6=7\)
Với a = 7
=) A \(=\frac{3990+820:\left(7-1\right)}{2000}=\frac{3990+820}{2000}=\frac{4810}{2000}=\frac{481}{200}\)
Vậy \(\frac{481}{200}\)là giá trị lớn nhất của \(A\) khi \(a=7\)
Bài giải
Ta có : \(A=\left(n+3\right)\text{ : }n=1+\frac{3}{n}\)
a, A có giá trị lớn nhất khi \(\frac{3}{n}\)đạt GTLN \(\Rightarrow\text{ }n\)đạt GTNN
Có 2 trường hợp : n đạt giá trị âm nhỏ nhất, n đạt giá trị dương nhỏ nhất
* Với n đạt giá trị âm nhỏ nhất \(\Rightarrow\text{ A âm}\)
* Với n đạt giá trị dương nhỏ nhất \(\Rightarrow\text{ A dương}\)
Vì \(A\text{ dương }>A\text{ âm nên A đạt GTLN khi n = 1 }\Rightarrow\text{ }A=4\)
b, Biểu thức \(A=1+\frac{3}{n}\) có giá trị là số tự nhiên khi \(3\text{ }⋮\text{ }n\text{ }\Rightarrow\text{ }n\inƯ\left(3\right)=\left\{\pm1\text{ ; }\pm3\right\}\)
để bt trên đạt max thì 720:(a-6) đạt max
=> a-6 đạt giá trị nhỏ nhất khác 0
=> a=7
\(B=\frac{17,58\left(43+57\right)}{293.a}=\frac{1758}{293.a}\)
a) Ta có \(B=\frac{1758}{293.a}=2\)
<=> \(293.a.2=1758\)
<=> 586.a=1758
<=> a=3
b)Để Bmax thì 293.a bé nhất và dương
=> 293.a=293
=> a=1
lúc đó \(B=\frac{1758}{293}=6\)
Vậy Bmax=6 <=> a=1