Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên
Trả lời:
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=1\)
Xét tử \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)
\(=2\sqrt{3+\sqrt{4-2\sqrt{3}}}=2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}=2\sqrt{3+\sqrt{3}-1}\)
\(=2\sqrt{2+\sqrt{3}}=\frac{2\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\frac{2\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{2\left(\sqrt{3}+1\right)}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
Suy ra VT = VP = 1
\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}-1-\sqrt{5}-1=-2\)
Vậy \(A\in Z\)
Làm tương tự với B.
a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)
Ta có :
A= \(\dfrac{2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Đặt B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Ta có B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}}\)
\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12}-1}}\\ =2\sqrt{3+\sqrt{4-\sqrt{12}}}\\ =2\cdot\sqrt{3+\sqrt{3-2\cdot\sqrt{3}+1}}\\ =2\cdot\sqrt{3+\sqrt{3}-1}\\ =2\cdot\sqrt{2+\sqrt{3}}\)
Thay B vào A, ta cũng có:
A=\(\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\\ =\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2\cdot\left(\sqrt{3}+1\right)}}\\ =\dfrac{\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}=1\)
Vậy A thuộc Z