\(A=\frac{2n+7}{5n+2}\left(n\in N\right)\)

Tìm n để A là ps tối giản

Giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

          Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2 thì:

     Ta có : 2n + 7 và 5n + 2 đều chia hết cho d

                => 5(2n + 7) và 2(5n + 2) chia hết cho d

                => 10n + 35 và 10n + 4 chia hết cho d

                => (10n + 35) - (10n + 4) chia hết cho d => 31 chia hết cho d

                => d = 31

      Để A tối giản thì d ko bằng 31

               => 2n + 7 ko chia hết cho 31

               => 2n + 7 - 31 ko chia hết cho 31

               => 2n - 28 ko chia hết cho 31

               => 2(n - 14) ko chia hết cho 31

               =>   n - 14 ko chia hết cho 31 ( vì 2 và 31 nguyên tố cùng nhau)

               =>   n - 14 ko bằng 31k 

               =>     n ko bằng 31k + 14( k thuộc Z )

       Vậy với n ko bằng 31k + 14 thì p/s A tối giản.

(BÀI NÀY TỚ HỌC RỒI NÊN CẬU YÊN TÂM)

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
3 tháng 3 2019

chịu thôi khó thế bạn

3 tháng 3 2019

Có sai đề ko dậz

22 tháng 3 2019

\(\frac{18n+7}{21n+7}=\frac{18}{21}\cdot\frac{n}{n}+1=\frac{6}{7}\cdot1+1=\frac{6}{7}+1\)1

đúng k