Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Ta có: 2014/2015>2014/(2015+2016)
2015/2016>2015/(2015+2016)
=>2014/2015+2015/2016>2014/(2015+2016)+2015/(2015+2016)
hay 2014/2015+2015/2016>(2014+2015)/(2015+2016)
hay A>B
Vậy A>B
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017
Cho A= \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2014}.\). So sánh A với 4
\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)
Vì \(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)
\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)
\(y=\frac{2014}{\frac{2015}{\frac{2015}{2016}}}=\frac{2014}{2015}.\frac{2015}{2016}=\frac{1007}{1008}=1-\frac{1}{2008}\)
\(\frac{2014}{2015}=1-\frac{1}{2015}\)
Vì \(\frac{1}{2008}>\frac{1}{2015}\)nên \(\frac{1007}{1008}< \frac{2014}{2015}\)
Vậy A>y
Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q
Suy ra : P < Q
Vậy P < Q.
Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy :P>Q
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha