\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2007^2+2008^2}\)

  CMR:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

xét a+ (a+1)2 =2a2 +2a +1 >2a2 +2a=2a(a+1)

\(\frac{1}{a^2+\left(a+1\right)^2}<\frac{1}{2}\cdot\frac{1}{a\cdot\left(a+1\right)}\)

áp dụng A< \(\frac{1}{2}\cdot\left(1-\frac{1}{2008}\right)<\frac{1}{2}\)

28 tháng 9 2019

Tham khảo:

undefined

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)+ \(\frac{1}{2008}\))                                                                           Giảia...
Đọc tiếp

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) 

b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với 

A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

                                                                           Giải

a 1\(\frac{3}{5}\)+ (\(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)) x = \(\frac{16}{5}\)\(\Leftrightarrow\) \(\frac{8}{5}\)+ [\(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\)x = \(\frac{16}{5}\)

\(\Leftrightarrow\)\(\frac{8}{5}\) + \(\frac{2}{5}\)x = \(\frac{16}{5}\)\(\Leftrightarrow\)\(\frac{2}{5}\)x = \(\frac{16}{5}\)\(-\)\(\frac{8}{5}\) \(\Leftrightarrow\) x = \(\frac{2}{5}\)\(\Leftrightarrow\)\(\frac{8}{5}\) : \(\frac{2}{5}\)\(\Leftrightarrow\)x=4

b 1 + \(\frac{1}{2}\)\(\frac{1}{3}\)+ ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\) 

 = (1 + \(\frac{1}{2008}\))  + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{2004}\)\(\frac{1}{2005}\)

= (1 + \(\frac{1}{2008}\)) + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{1004}\)\(\frac{1}{1005}\))

\(\frac{2009}{1\times2008}\) + \(\frac{2009}{2\times2007}\) +  ... + \(\frac{2009}{1004\times1009}\) 

= 2009(\(\frac{1}{1\times2008}\) + \(\frac{1}{2\times2007}\)+ ... + \(\frac{1}{1004\times1005}\)

Do đó A = 1 . 2 .3 ... 2007 . 2008 . (1 + \(\frac{1}{2}\) + \(\frac{1}{3}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

             = 2009(1 . 2 . 3 ... 2007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\)+ ... + \(\frac{1}{1004.1005}\) ) \(⋮\) 2009

Vì 1 . 2 . 3 ... 1007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\) + ... + \(\frac{1}{2004.2005}\)) là một số tự nhiên 

CÁC BẠN CÓ AI GIỐNG CÁCH LÀM CỦA MÌNH THÌ TRẢ LỜI NHÉ

1
8 tháng 5 2017

mk nghĩ là bn làm đúng đó !

19 tháng 10 2017

Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Ghép tử và mẫu....

Vậy A = 2009